
Emerging Memory Technology on CXL™

WSOS 2023

Andy Rudoff, Intel Labs

Emerging Memory Technology on CXL™

WSOS 2023

Andy Rudoff, Intel Labs, CXL Consortium Member

Emerging Memory Technology on CXL™

WSOS 2023

Andy Rudoff, Intel Labs, CXL Consortium Member, Product-Oriented Software Architect

Other Than Media

Intel Labs 4

Compute Express Link (CXL)

March 2019

CXL 1.0
Specification
Released

September 2019

CXL 1.1
Specification
Released

November 2020

CXL 2.0
Specification
Released

August 2022

CXL 3.0
Specification
Release

Intel Labs 5

Representative CXL Usages
Memory Buffers

CXL • CXL.io
• CXL.memory

PROTOCOLS

Me
mo

ry

Me
mo

ry

Me
mo

ry

Me
mo

ryMemory Buffer

Processor

DD
R

DD
R

• Memory BW expansion
• Memory capacity expansion
• Persistent memory

USAGES

Accelerators with Memory

CXL • CXL.io
• CXL.cache
• CXL.memory

PROTOCOLS

• GPU
• FPGA
• Dense computation

USAGES

HB
M

Accelerator

Cache

Processor

DD
R

DD
R

Caching Devices / Accelerators

CXL • CXL.io
• CXL.cache

PROTOCOLS

• PGAS NIC
• NIC atomics

USAGES

Accelerator
NIC

Cache

Processor

DD
R

DD
R

TYPE 1 TYPE 2 TYPE 3

HB
M

Intel Labs 6

Industry trends CXL 3.0 introduces…

CXL 3.0 Specification

§ Use cases driving need for higher
bandwidth include: high performance
accelerators, system memory,
SmartNIC and leading edge
networking

§ CPU efficiency is declining due to
reduced memory capacity and
bandwidth per core

§ Efficient peer-to-peer resource
sharing across multiple domains

§ Memory bottlenecks due to CPU pin
and thermal constraints

§ Fabric capabilities
§ Multi-headed and fabric attached devices
§ Enhance fabric management
§ Composable disaggregated infrastructure

§ Improved capability for better scalability
and resource utilization

§ Enhanced memory pooling
§ Multi-level switching
§ New enhanced coherency capabilities
§ Improved software capabilities

§ Double the bandwidth
§ Zero added latency over CXL 2.0
§ Full backward compatibility with CXL 2.0,

CXL 1.1, and CXL 1.0

Intel Labs 7

CXL 3.0 Spec Feature Summary

Not supported

ü Supported

Features CXL 1.0 / 1.1 CXL 2.0 CXL 3.0
Release date 2019 2020 August 2022

Max link rate 32GTs 32GTs 64GTs

Flit 68 byte (up to 32 GTs) ü ü ü

Flit 256 byte (up to 64 GTs) ü

Type 1, Type 2 and Type 3 Devices ü ü ü

Memory Pooling w/ MLDs ü ü

Global Persistent Flush ü ü

CXL IDE ü ü

Switching (Single-level) ü ü

Switching (Multi-level) ü

Direct memory access for peer-to-peer ü

Enhanced coherency (256 byte flit) ü

Memory sharing (256 byte flit) ü

Multiple Type 1/Type 2 devices per root port ü

Fabric capabilities (256 byte flit) ü

Intel Labs 8

RECAP: CXL 2.0 Feature Summary
Switch Capability

• Supports single-level
switching

• Enables memory
expansion and resource
allocation

H1

CXL Switch

CXL

D1

CXL

D#

CXL

D3

CXL

D2

CXL

CXL 2.0

Intel Labs 9

CXL 3.0: Switch Cascade/Fanout
Supporting vast array of switch topologies

Multiple switch levels
(aka cascade)
• Supports fanout

of all device
types

1

1 1

H1

CXL

CXL

CXL 3.0

CXL Switch

CXL Switch

D1

CXL

D#

CXL

D1

CXL

D#

CXL

CXL Switch

CXL

H1

CXL

CXL Switch

CXL Switch

CXL

D1

CXL

D2

CXL

D3

CXL

D#

D3

D#D1

D2

CXL

CXL

CXL

CXL

CXL

CXL 3.0

1

Intel Labs 10

CXL 3.0: Device to Device Comms

D1 D3D2 D4 D5 D#

CXL 3.0 enables peer-to-
peer communication (P2P)
within a virtual hierarchy of
devices

• Virtual hierarchies are
associations of devices that
maintains a coherency domain

1

1 CXL
Switch(es)

H#H4H3H2H1

CXLCXLCXLCXLCXL

CXLCXLCXLCXLCXL CXL CXL

D3

1

D6

P2P access

Intel Labs 11

RECAP: CXL 2.0 Feature Summary
Memory Pooling

Device memory can be
allocated across multiple
hosts.

2 Multi Logical Devices allow
for finer grain memory
allocation

1
CXL 2.0 Switch

D1 D2 D3 D4 D#

H#H4H3H2H1

2

1

Intel Labs 12

CXL 3.0 Coherent Memory Sharing

D1

1 CXL Switch(es)

H#H2H1

CXLCXLCXL

CXL

Shared
Memory

Device memory can be
shared by all hosts to
increase data flow efficiency
and improve memory
utilization

Host can have a coherent
copy of the shared region or
portions of shared region in
host cache

CXL 3.0 defined
mechanisms to enforce
hardware cache coherency
between copies

1

1S1

S1 Copy

2

3

2

3

Standardized CXL Fabric Manager

S2

S1 Copy
S2 Copy

S2 Copy

Pooled Memory

Multi-host Single Logical Device (MH-SLD)

13

DCD SW Stack

Type 3
Logical Device

1 (LD1)

Host 1
(H1)

Generic CXL
Type 3 Driver

Orchestrator
(O)

Fabric
Manager

(FM)

Host 2
(H2)

Generic CXL
Type 3 Driver

Other standards such as
Redfish or Proprietary

OSV
specific

Other
CXL

Fabric
Elements

New Dynamic Capacity Commands

Dynamic
Capacity
extensions
to FM API

FM API

Type 3
Logical Device

2 (LD2)

Memory

Intel Labs 14

Dynamic Capacity Device (DCD)
§Defined in CXL 3.0 Specification

Intel Labs 15

Example: Memory Pool

OrchestratorHost 2
Agent

LD
2

Host 7
Agent

LD
7

…
Host 1

Agent

LD
1

Host 0

LD
0

Agent

FM

Memory Pool
(CXL MH-SLD)

Intel Labs 16

Example: Initial HDM Decoder Programming

OrchestratorHost 2
Agent

LD
2

Host 7
Agent

LD
7

…
Host 1

Agent

LD
1

Host 0

LD
0

Agent

FM

Memory Pool
(CXL MH-SLD)

Host Physical Address (HPA)

Intel Labs 17

Example: Add Memory

OrchestratorHost 2
Agent

LD
2

Host 7
Agent

LD
7

…
Host 1

Agent

LD
1

Host 0

LD
0

Agent

FM

Memory Pool
(CXL MH-SLD)

Populated Memory Extent

Intel Labs 18

Example: Shared Memory

OrchestratorHost 2
Agent

LD
2

Host 7
Agent

LD
7

…
Host 1

Agent

LD
1

Host 0

LD
0

Agent

FM

Memory Pool
(CXL MH-SLD)

Concurrently Shared Memory
• SW or HW coherency
• TBD: Application APIs for:

• Allocation
• Cross-host coordination

Intel Labs 19

CXL 3.0: Fabrics Example
Nodes can be any
combination:
• Hosts
• Type 1 – Device with cache
• Type 2 – Device with cache

and memory
• Type 3 – Device with memory

1

1

CXL Switch

Host

CXL

Node

CXL

CXL Switch

Host

CXL

Node

CXL

CXL Switch

Node

CXL

Host

CXL

CXL Switch

Node

CXL

Host

CXL

CXL Switch

End-
PointCXL

HostCXL

CXL Switch

Node CXL

Host
CXL

Intel Labs 20

The Memory Area Network (MAN)
Modeled after the Storage Area Network (SAN)

§Applications can use it like
direct-connect storage

§ Features added transparently:
• Replication (i.e., RAID)

• Management

• Pooling/sharing between nodes

§Advanced features:
• Processing in storage

§Applications can use it like
direct-connect memory

§ Features added transparently:
• Replication

• Management

• Pooling/sharing between nodes

§Advanced features:
• Processing in memory

SAN MAN

Intel Labs 21

The Memory Area Network

host 1 host 2 host N…

interconnect

Memory Controller/CNM Processing

… CXL Memory Devices

Erasure coded data

CXL

CNM Operations:
- Vector operations
- Shared access coordination
- PMem operations

- transactions
- allocations

Software:
- OneAPI

- i.e., GPU APIs
- Shared Memory FS
- Shared PMDK libraries

Possible topologies:
- CXL interconnect
- Potentially other fabrics
- Replication:

- RAID-style in pool
- Between pools

High RAS shared memory:
- Dynamic Capacity Device (DCD)
- Chip Kill
- DIMM Kill (CXL device kill)
- No SPOF
- PMem programming model

Optional
storage

Intel Labs 22

The Vision: Build on CXL Memory Pooling/Sharing
§Memory Appliance Features, similar to what SAN did for storage
• Like transparent replication, higher RAS, advanced management

§ Provide Memory Tiering to mitigate the latency of “far” CXL memory
• IHVs can provide tiering features to add value to their products

§ Provide the PMem programming model
• Implementation could use either persistent or volatile media

§ Build Compute Near Memory features into the pooled memory
• Can share CNM logic and memory among hosts – no “stranded” resources

Intel Labs 23

Works, Needs Work, Really Needs Work

§App transparent NUMA
• Kernel handles this

• Most common case

§Make existing sharing APIs work
• Not too difficult

• OpenMP, OpenFabrics, existing PGAS work

§APIs to better leverage CXL sharing
• Maintaining consistency

• PMem work can be leveraged

• Full load/store sharing
• Like two local threads, but across hosts

• Need easy abstraction for allocation/coordination

Really Needs WorkWorks

Needs Work
§ Hot/Cold page telemetry
§ NUMA APIs for Applications
• Existing libraries are a good start
• libnuma, libmemkind

• Need easy abstraction for HMAT info

