Emerging Memory Technology on CXL™

WSOS 2023

Andy Rudoff, Intel Labs

intel.

Emerging Memory Technology on CXL™

WSOS 2023

Andy Rudoff, Intel Labs, CXL Consortium Member

intel.

Other Than Media

Emerging Memory Technolog%yA?n CXL™

WSOS 2023

Andy Rudoff, Intel Labs, CXL Consortium Member, Product-Oriented Software Architect

intel.

Compute Express Link (CXL)

CXL Overview p A= £l A

AIibabaG‘roup AMD:‘ arm CiIsco MLEMC

* New breakthrough high-speed fabric

=

« Enables a high-speed, efficient interconnect between CPU, memory and Google Hewlett Packard

accelerators Enterprise
+ Builds upon PCI Express® (PCle®) infrastructure, leveraging the PCle® physical and @

electrical interface m Meta HE ps: sicron SAMISUNG
* Maintains memory coherency between the CPU memory space and memory on CXL LY Microsoft M NVIDIA.

attached devices
« Enables fine-grained resource sharing for higher performance in heterogeneous compute

environments
+ Enables memory disaggregation, memory pooling and sharing, persistent memory and ComPUte
emerging memory media Expriss
H Lln ™

* Delivered as an open industry standard
« CXL 3.0 specification is fully backward compatible with CXL 2.0 and CXL 1.1

« Future CXL Specification generations will include continuous innovation to meet Industry Open Standard for
industry needs and support new technologies High Speed Communications

CXL Board of Directors

200+ Member Companies

March 2019 September 2019 November 2020 August 2022
CXL 1.0 CXL 1.1 CXL 2.0 CXL 3.0
Specification Specification Specification Specification
Released Released Released Release

Intel Labs inteL 4

Representative CXL Usages

Caching Devices | Accelerators

TYPE1

Processor

PROTOCOLS

 CXL.io
 CXL.cache

Accelerator
NIC

USAGES

« PGAS NIC
¢ NIC atomics

Intel Labs

Accelerators with Memory

TYPE 2

Processor

PROTOCOLS

+ CXL.io
» CXL.cache
+ CXL.memory

Accelerator

USAGES

+ GPU
* FPGA
* Dense computation

Memory Buffers

TYPE 3

Processor

PROTOCOLS

CXL : SChemory

Memory Buffer

USAGES

* Memory BW expansion
* Memory capacity expansion
* Persistent memory

CXL 3.0 Specification

Industry trends

Intel Labs

Use cases driving need for higher
bandwidth include: high performance
accelerators, system memory,
SmartNIC and leading edge
networking

CPU efficiency is declining due to
reduced memory capacity and
bandwidth per core

Efficient peer-to-peer resource
sharing across multiple domains

Memory bottlenecks due to CPU pin
and thermal constraints

CXL 3.0 introduces...

Fabric capabilities

= Multi-headed and fabric attached devices

= Enhance fabric management

= Composable disaggregated infrastructure
Improved capability for better scalability
and resource utilization

= Enhanced memory pooling

= Multi-level switching

= New enhanced coherency capabilities

= Improved software capabilities

Double the bandwidth
Zero added latency over CXL 2.0

Full backward compatibility with CXL 2.0,
CXL1.1,and CXL 1.0

intel.

6

CXL 3.0 Spec Feature Summary
Featwes | CXL10/11 | CXL20 | CXL30 |

Release date 2019 2020 August 2022
Max link rate 32GTs 32GTs 64GTs

Fit 68 byte (up to 32 GTs] |/ @@

Flit 256 byte (up to 64 GTs)

Memory Pooling w/ MLDs

Global Persistent Flush _

Switching (Single-level)

Switching (Multi-level)

Direct memory access for peer-to-peer
Enhanced coherency (256 byte flit)

Memory sharing (256 byte flit)

Multiple Type 1/Type 2 devices per root port
Fabric capabilities (256 byte flit)

Not supported

Intel Labs inteL 7

RECAP: CXL 2.0 Feature Summary
Switch Capability

CXL 2.0
: e Supports
CXL Switch
| | | |
* Enables

and resource
allocation

Intel Labs inteL

CXL 3.0: Switch Cascade/Fanout

Supporting vast array of switch topologies
CXL 3.0 CXL 3.0

oxL cxL @ Multiple switch levels
n n (aka cascade)
I - « Supports fanout

CXL CXL types
a @ CXL E @ CXL @CXL
CXL Switch CXL Switch CXL Switch

CXL CXL CXL CXL

Intel Labs inteL

CXL 3.0: Device to Device Comms

ol - - - o () CXL 3.0 enables pecr o

c 2) t ch | peer communication (P2P)
XL within a virtual hierarchy of
0 . devices
P2P access Switch(es)

I_|_|_|_|_|_|—I * Virtual hierarchies are

CXL CXL

| associations of devices that
maintains a coherency domain

Intel Labs inteL 10

RECAP: CXL 2.0 Feature Summary
Memory Pooling

=

Intel Labs

N

CXL 2.0 Switch

w

fY

m @ Device memory can be

allocated across multiple
hosts.

Multi Logical Devices allow
for finer grain memory
allocation

#*

intel.

CXL 3.0 Coherent Memory Sharing

D Device memory can be
shared by all hosts to
increase data flow efficiency
and improve memory
utilization

Host can have a coherent

(@ copy of the shared region or
portions of shared region in
host cache

Shared

Memory CXL 3.0 defined
mechanisms to enforce
® hardware cache coherency

] between copies
_ Pooled Memory

Intel Labs inteL 12

DCD SW Stack DL s

Orchestrator

(0)

osVv
specific

Host 1 -=~"Host 2
(H1) (H2)

Other Other standards such as
CXL Redfish or Proprietary

Generic CXL Generic CXL
Type 3 Driver Type 3 Driver

New Dynamic Capacity Commands

Fabric
Elements

FM API
Type 3 Type 3 D :
: : ynamic :
Logical Device Logical Device = IVIFaanbargllcer
1 (LD1) 2 (LD2) extensions (FM)
to FM API

Multi-host Single Logical Device (MH-SLD)

Dynamic Capacity Device (DCD)
= Defined in CXL 3.0 Specification

Intel Labs

Identify Memory Device
Get Partition Info
| Set Partition Info
Get Dynamic Capacity Configuration
Get Dynamic Capacity Extent List

Total Capacity

Partitionable Capacity

1

HiiN

il

Dynamic Dynamic Dynamic
Volatile | Active ALN Active | Persistent Capacity capaciy || 2]13]| 4 || S 6 || capacity
Only Volatile N]Y Persistent Only | IR 2 S
Capacity | Capacity Capacity | Capacity Number of Available Regions
DPA 0= All capacity boundaries are 256MB aligned MAX DPA

intel.

14

Example: Memory Pool

Orchestrator

FM

Intel Labs intel@ =

Example: Initial HDM Decoder Programming

Host Physical Address (HPA)

Orchestrator

FM

Intel Labs intel@

Example: Add Memory

Populated Memory Extent

Orchestrator

FM

Intel Labs intel@ 7

Example: Shared Memory

Orchestrator

FM

Concurrently Shared Memory
 SW or HW coherency
* TBD: Application APIs for:
e Allocation
* Cross-host coordination

Intel Labs intel@ 18

CXL 3.0: Fabrics Example

CXL

ﬂ -

Intel Labs

CXL Switch

CXL Switch

CXL Switch

O

CXL Switch

CXL Switch

CXL Switch

(D Nodes can be

CXL

CXL

Hosts

Type 1 — Device with cache
Type 2 — Device with cache
and memory

Type 3 — Device with memory

intel.

19

The Memory Area Network (MAN)
Modeled after the Storage Area Network (SAN)

SAN MAN
= Applications can use it like = Applications can use it like
direct-connect storage direct-connect memory
» Features added transparently: » Features added transparently:
 Replication (i.e., RAID) * Replication
* Management * Management
* Pooling/sharing between nodes * Pooling/sharing between nodes
= Advanced features: = Advanced features:

* Processing in storage * Processing in memory

Intel Labs intel@

20

The Memo

High RAS shared memory:

- Dynamic Capacity Device (DCD)
- Chip Kill

- DIMMKIll (CXL device kill)

- No SPOF

- PMem programming model

Possible topologies:
- CXLinterconnect
- Potentially other fabrics
- Replication:
- RAID-style in pool
- Between pools

Intel Labs

v Area Network

Erasure coded data

—

CXL Memory Devices

Optional
storage

Memory Controller/CNM Processing

interconnect

CNM Operations:
- Vector operations
- Shared access coordination
- PMem operations
- transactions
- allocations

Software:
- OneAPI
- i.e., GPUAPIs
- Shared Memory FS
- Shared PMDK libraries

intel. =

The Vision: Build on CXL Memory Pooling/Sharing

» Memory Appliance Features, similar to what SAN did for storage
* Like transparent replication, higher RAS, advanced management

* Provide Memory Tiering to mitigate the latency of “far” CXL memory
* [HVs can provide tiering features to add value to their products

* Provide the PMem programming model
* Implementation could use either persistent or volatile media

* Build Compute Near Memory features into the pooled memory
» Can share CNM logic and memory among hosts — no “stranded” resources

Intel Labs intel@ 22

Works, Needs Work,

Works
* App transparent NUMA

 Kernel handles this
e Most common case

Needs Work
» Hot/Cold page telemetry

* NUMA APIs for Applications

 Existing libraries are a good start

* libnuma, libmemkind

* Need easy abstraction for HMAT info

Intel Labs

Really Needs Work

Really Needs Work
= Make existing sharing APls work

« Not too difficult
* OpenMP, OpenkFabrics, existing PGAS work

» APIs to better leverage CXL sharing

* Maintaining consistency

* PMem work can be leveraged

* Full load/store sharing

» Like two local threads, but across hosts

* Need easy abstraction for allocation/coordination

intel.

23

