
Language-Support for Correct and Reliable Enforcement of Access
Control Policies

Peter Amthor

Distributed and Operating Systems Group
Technische Universität Ilmenau
peter.amthor@tu-ilmenau.de

2023–09–28

Herbsttreffen FGBS 2023, Bamberg

mailto:peter.amthor@tu-ilmenau.de


A Bit of Context

• Security as a mission-critical non-functional property of (system) software
• + Reference monitor architecture
• + Access control (AC) policy

US

Kernel

Process

FS
AC Policy

Peter Amthor • Language-Support for Correct and Reliable Enforcement of Access Control Policies 2



A Bit of Context

• Security as a mission-critical non-functional property of (system) software
• + Reference monitor architecture
• + Access control (AC) policy

Policy
Analysis

US

Kernel

Process

Policy
Modeling

Policy
Implementation

FS
AC Policy

Peter Amthor • Language-Support for Correct and Reliable Enforcement of Access Control Policies 2



Typical Languages (and why they are used)

Languages

Modeling+ Specification Languages
• … for attribute-based AC models (ABAC)
• e. g. XACML, Polar, SELinux policy language

Analysis+ Formal Languages
• … to find e. g. privilege escalation or
information flow vulnerabilites
• e. g. automata, flow graphs, FOL, PDL, CSP, …

Implementation+ Programming Languages
• C (and others … )

Their virtues:
1 Adequate policy abstractions,

e. g. file attributes, user roles, etc.

2 Verifiability
of policy correctness

3 Ergonomics
to constructively avoid errors

4 Reliable enforcement,
i. e. tamper-proof storage and
non-circumventable interfaces of
a policy

Peter Amthor • Language-Support for Correct and Reliable Enforcement of Access Control Policies 3



Typical Languages (and why they are used)

Languages

Modeling+ Specification Languages
• … for attribute-based AC models (ABAC)
• e. g. XACML, Polar, SELinux policy language

Analysis+ Formal Languages
• … to find e. g. privilege escalation or
information flow vulnerabilites
• e. g. automata, flow graphs, FOL, PDL, CSP, …

Implementation+ Programming Languages
• C (and others … )

Their virtues:
1 Adequate policy abstractions,

e. g. file attributes, user roles, etc.

2 Verifiability
of policy correctness

3 Ergonomics
to constructively avoid errors

4 Reliable enforcement,
i. e. tamper-proof storage and
non-circumventable interfaces of
a policy

Peter Amthor • Language-Support for Correct and Reliable Enforcement of Access Control Policies 3



Typical Languages (and why they are used)

Languages

Modeling+ Specification Languages
• … for attribute-based AC models (ABAC)
• e. g. XACML, Polar, SELinux policy language

Analysis+ Formal Languages
• … to find e. g. privilege escalation or
information flow vulnerabilites
• e. g. automata, flow graphs, FOL, PDL, CSP, …

Implementation+ Programming Languages
• C (and others … )

Their virtues:
1 Adequate policy abstractions,

e. g. file attributes, user roles, etc.

2 Verifiability
of policy correctness

3 Ergonomics
to constructively avoid errors

4 Reliable enforcement,
i. e. tamper-proof storage and
non-circumventable interfaces of
a policy

Peter Amthor • Language-Support for Correct and Reliable Enforcement of Access Control Policies 3



Typical Languages (and why they are used)

Languages

Modeling+ Specification Languages
• … for attribute-based AC models (ABAC)
• e. g. XACML, Polar, SELinux policy language

Analysis+ Formal Languages
• … to find e. g. privilege escalation or
information flow vulnerabilites
• e. g. automata, flow graphs, FOL, PDL, CSP, …

Implementation+ Programming Languages
• C (and others … )

Their virtues:
1 Adequate policy abstractions,

e. g. file attributes, user roles, etc.

2 Verifiability
of policy correctness

3 Ergonomics
to constructively avoid errors

4 Reliable enforcement,
i. e. tamper-proof storage and
non-circumventable interfaces of
a policy

Peter Amthor • Language-Support for Correct and Reliable Enforcement of Access Control Policies 3



The Problem

Observations:

• Different levels of abstraction
• Different expressiveness
• Different syntax and semantics

→ Translations are costly
→Translations are error-prone!

Peter Amthor • Language-Support for Correct and Reliable Enforcement of Access Control Policies 4



The Problem

Observations:

• Different levels of abstraction
• Different expressiveness
• Different syntax and semantics

→ Translations are costly
→Translations are error-prone!

Peter Amthor • Language-Support for Correct and Reliable Enforcement of Access Control Policies 4



The Problem

What we should do:

ABAC
Automaton
Calculus

C
Informal
Security
Policy

(OS) Reference
Monitor Architecture

What we actually do:
ABAC

Automaton
Calculus

C

Informal
Security
Policy

(OS) Reference
Monitor Architecture

“Let’s hope for the best …”

Peter Amthor • Language-Support for Correct and Reliable Enforcement of Access Control Policies 5



The Problem

What we should do:

ABAC
Automaton
Calculus

C
Informal
Security
Policy

(OS) Reference
Monitor Architecture

What we actually do:
ABAC

Automaton
Calculus

C

Informal
Security
Policy

(OS) Reference
Monitor Architecture

“Let’s hope for the best …”

Peter Amthor • Language-Support for Correct and Reliable Enforcement of Access Control Policies 5



Our Goal

Make Language Translations …
1 automatic (tool-based) whenever possible,

2 semantically small, whenever manually inevitable

DynaMo DABAC dabac-rs
Informal
Security
Policy

2

2

1

Contributions:
• DynaMo: ergonomic, machine-readable ABAC specification language
• DABAC: flexible formal calculus for analyzing dynamic properties
• dabac-rs: reference monitor runtime library in Rust
• dmo2rs: transpiler from DynaMo to Rust (prototype w. i. p)

Peter Amthor • Language-Support for Correct and Reliable Enforcement of Access Control Policies 6



Policy Specification → Policy Analysis

DynaMo DABAC dabac-rs
Informal
Security
Policy

DynaMo
begin state-transition-scheme:
read_obj(S s_caller, O o_record):
pre: check_acf(’read’ s_caller, get_att(s_caller, ’roles_active’)) or

(
check_bool(’joint_groups’, s_caller, o_record) and
check_bool(’joint_groups’, get_att(s_caller, ’wards’).any.s, o_record)

);
begin post:

set_att(o_record, ’last_access’, query(UTC_NOW));
...

end post;

Peter Amthor • Language-Support for Correct and Reliable Enforcement of Access Control Policies 7



Policy Specification → Policy Analysis

DynaMo DABAC dabac-rs
Informal
Security
Policy

DABAC Model
▶ readObj(u ∈ Uγ , o ∈ Oγ) ::=
VAR: ru = attURγ (u), Iu = attUIγ (u), Io = attOIγ (o), wu = attUWγ (u),

I′ =
∪

u′∈Uγ\{u}, attUWγ (u′)=wu
attUIγ (u

′)

PRE: authread(ru) ∨
(
authgroup(Iu, Io) ∧ authgroup(I′, Io)

)
POST: attOTγ (o)← attt(tPhysClock)

…

Peter Amthor • Language-Support for Correct and Reliable Enforcement of Access Control Policies 8



Policy Implementation

DynaMo DABAC dabac-rs
Informal
Security
Policy

dabac-rs

let ra_comp = DABACComp {
name: ”roles_active”.to_owned(),
features: [None, None, Some(Aa(0)), None, None, Some(Dyn)],
inner: &USER_ROLES_ACT,

};
let dabac_model = DABACBuilder::new()

.with_component(&user_comp).with_component(&ra_comp). ...

.with_policy(”path/to/policy.dmo”) // also native Rust code possible

.build(); // initialize model
...
// peter = User(42) requests ‘read‘ access on myrec = Object(8):
if dabac_model.op(”read_obj”, (peter, myrec)) { /* actual application logic for ‘read‘ */ ... }

Peter Amthor • Language-Support for Correct and Reliable Enforcement of Access Control Policies 9



Conclusion

Problem Statement
1 AC policy engineering: a problem (not just) of system software

2 Correctness of a policy is crucial

3 Correctness of enforcement as a reference monitor is crucial

+ … adequate language support is crucial

Current Work … is to put the pieces together:

• Validate modeling and analysis capabilities of DynaMoand DABAC
→ real-world scenarios, both local and distributed
• Extend tooling for automatic implementation of AC policies (dmo2rs)
• Optimize heuristic analysis methods for dynamic state machine properties (privilege
escalation)
→ separate work

Peter Amthor • Language-Support for Correct and Reliable Enforcement of Access Control Policies 10



Conclusion

Problem Statement
1 AC policy engineering: a problem (not just) of system software

2 Correctness of a policy is crucial

3 Correctness of enforcement as a reference monitor is crucial

+ … adequate language support is crucial

Current Work … is to put the pieces together:

• Validate modeling and analysis capabilities of DynaMoand DABAC
→ real-world scenarios, both local and distributed
• Extend tooling for automatic implementation of AC policies (dmo2rs)
• Optimize heuristic analysis methods for dynamic state machine properties (privilege
escalation)
→ separate work

Peter Amthor • Language-Support for Correct and Reliable Enforcement of Access Control Policies 10



Language-Support for Correct and Reliable Enforcement of Access
Control Policies

Peter Amthor

Distributed and Operating Systems Group
Technische Universität Ilmenau
peter.amthor@tu-ilmenau.de

2023–09–28

Peter Amthor • Language-Support for Correct and Reliable Enforcement of Access Control Policies 11

mailto:peter.amthor@tu-ilmenau.de

