Language-Support for Correct and Reliable Enforcement of Access

Control Policies

Peter Amthor

Distributed and Operating Systems Group
Technische Universitat Ilmenau
peteramthor@tu-ilmenau.de

2023-09-28

m.

Herbsttreffen FGBS 2023, Bamberg

mailto:peter.amthor@tu-ilmenau.de

A Bit of Context

® Security as a mission-critical non-functional property of (system) software

® 1z Reference monitor architecture

® = Access control (AC) policy

Peter Amthor

[Process

i

Kernel

AC Policy

Language-Support for Correct and Reliable Enforcement of Access Control Policies

A Bit of Context

® Security as a mission-critical non-functional property of (system) software
® =z Reference monitor architecture

® 1= Access control (AC) policy

[) SJ
Process

Kernel

AC Policy

- \
- \
- N
- N
- N

- \

- - \
_ - AR
Policy Policy
Modeling Implementation

Peter Amthor .« Language-Support for Correct and Reliable Enforcement of Access Control Policies 2

Typical Languages (and why they are used)

Languages

Modeling = Specification Languages
o . for attribute-based AC models (ABAC)
® e.g. XACML, Polar, SELinux policy language

Peter Amthor .« Language-Support for Correct and Reliable Enforcement of Access Control Policies

Typical Languages (and why they are used)

Languages

Modeling = Specification Languages
o . for attribute-based AC models (ABAC)
® e.g. XACML, Polar, SELinux policy language

= Formal Languages

... to find e. g. privilege escalation or
information flow vulnerabilites

e.g. automata, flow graphs, FOL, PDL, CSP, ...

Peter Amthor .« Language-Support for Correct and Reliable Enforcement of Access Control Policies

Typical Languages (and why they are used)

Languages

Modeling = Specification Languages
o . for attribute-based AC models (ABAC)
® e.g. XACML, Polar, SELinux policy language

= Formal Languages

... to find e. g. privilege escalation or
information flow vulnerabilites

e.g. automata, flow graphs, FOL, PDL, CSP, ...

Implementation = Programming Languages

® C (and others ... B)

Peter Amthor .« Language-Support for Correct and Reliable Enforcement of Access Control Policies

Typical Languages (and why they are used)

Languages

Modeling = Specification Languages
o . for attribute-based AC models (ABAC)
® e.g. XACML, Polar, SELinux policy language

= Formal Languages

... to find e. g. privilege escalation or
information flow vulnerabilites

e.g. automata, flow graphs, FOL, PDL, CSP, ...

Implementation = Programming Languages

® C (and others ... B)

Peter Amthor .« Language-Support for Correct and Reliable Enforcement of Access Control Policies

Their virtues:

@ Adequate policy abstractions,
e.g. file attributes, user roles, etc.
@ Verifiability
of policy correctness

® Ergonomics
to constructively avoid errors

® Reliable enforcement,
i. e. tamper-proof storage and
non-circumventable interfaces of
a policy

The Problem

Observations:

® Different levels of abstraction
® Different expressiveness

¢ Different syntax and semantics

— Translations are costly
— Translations are error-prone!

T BINK Nou SHowp e Mone
EXPLIUIT HERE IN STEP TWO,"

Peter Amthor .« Language-Support for Correct and Reliable Enforcement of Access Control Policies 4

The Problem

Observations:

® Different levels of abstraction
® Different expressiveness

¢ Different syntax and semantics

— Translations are costly

T BINK Nou SHowp e Mone
EXPLIUIT HERE IN STEP TWO,"

Peter Amthor .« Language-Support for Correct and Reliable Enforcement of Access Control Policies 4

The Problem

What we should do:

Informal
Security ——» YN N . (OS) Reference
i Monitor Architecture
Policy

Peter Amthor .« Language-Support for Correct and Reliable Enforcement of Access Control Policies 5

The Problem
What we should do:
A " e ~ (OS) Reference
Monitor Architecture

“Let’s hope for the best ..”

Informal
Security —»
Policy

What we actually do:

Informal , (OS) Reference
Lo e
Security Monitor Architecture

Policy <«

Peter Amthor .« Language-Support for Correct and Reliable Enforcement of Access Control Policies 5

Make Language Translations ...
@ automatic (tool-based) whenever possible,

® semantically small, whenever manually inevitable

Informal e o

Security —— DMV mmmmmmma dabac-rs
. B

Policy o

Contributions:
® DyNnAMo: ergonomic, machine-readable ABAC specification language
® DABAC: flexible formal calculus for analyzing dynamic properties
® dabac-rs: reference monitor runtime library in Rust

® dmo2rs: transpiler from DYNAMo to Rust (prototype w.i.p)

Peter Amthor .« Language-Support for Correct and Reliable Enforcement of Access Control Policies

Policy Specification — Policy Analysis

Informal
——>
Security aamme DYNAMO DABAC
Policy

DynAMoO

begin state-transition-scheme:
read_obj(S s_caller, 0 o_record):
pre: check_acf(’'read’ s_caller, get_att(s_caller, ’'roles_active’)) or

(
check_bool(’joint_groups’, s_caller, o_record) and
check_bool(’joint_groups’, get_att(s_caller, ’'wards’).any.s, o_record)
);
begin post:

set_att(o_record, ’'last_access’, query(UTC_NOW));

end post;

Peter Amthor Language-Support for Correct and Reliable Enforcement of Access Control Policies

Policy Specification — Policy Analysis

Informal

Security mmmma DYNAMO
Policy

DABAC

» readObj(u € Uy,0€ O,) =
VAR: r, = attyg, (u), l, = atty, (u), lo = attoy (0), w, = attyw. (u),
r= Uu’GUW\{u},attuww(u’):Wu attUl’Y(ul)
PRE: authyead(ru) V (authgroup(lu, lo) A authgeoup(!', o))
POST: attor, (o) < att(tPhysClock)

Peter Amthor .« Language-Support for Correct and Reliable Enforcement of Access Control Policies

Policy Implementation
_>

dabac-rs

let ra_comp = DABACComp {
name: "roles_active”.to_owned(),
features: [None, None, Some(Aa(0)), None, None, Some(Dyn)],
inner: &USER_ROLES_ACT,

s

let dabac_model = DABACBuilder: :new()
.with_component(&user_comp).with_component(&ra_comp).
.with_policy(”path/to/policy.dmo”) // also native Rust code possible
.build(); // initialize model

// peter = User(42) requests ‘read‘ access on myrec = Object(8):
if dabac_model.op(”read_obj”, (peter, myrec)) { /* actual application logic for ‘read‘ */ ... }

Peter Amthor . Language-Support for Correct and Reliable Enforcement of Access Control Policies 9

Conclusion

Problem Statement

© AC policy engineering: a problem (not just) of system software
@ Correctness of a policy is crucial

© Correctness of enforcement as a reference monitor is crucial

Current Work ... is to put the pieces together:
® Validate modeling and analysis capabilities of DyNAMoand DABAC
— real-world scenarios, both local and distributed
® Extend tooling for automatic implementation of AC policies (dmo2rs)

® Optimize heuristic analysis methods for dynamic state machine properties (privilege
escalation)
— separate work

Peter Amthor .« Language-Support for Correct and Reliable Enforcement of Access Control Policies 10

Conclusion

Problem Statement

© AC policy engineering: a problem (not just) of system software
@ Correctness of a policy is crucial
© Correctness of enforcement as a reference monitor is crucial

... adequate language support is crucial

Current Work ... is to put the pieces together:
® Validate modeling and analysis capabilities of DyNAMoand DABAC
— real-world scenarios, both local and distributed
® Extend tooling for automatic implementation of AC policies (dmo2rs)

® Optimize heuristic analysis methods for dynamic state machine properties (privilege
escalation)
— separate work

Peter Amthor .« Language-Support for Correct and Reliable Enforcement of Access Control Policies 10

Language-Support for Correct and Reliable Enforcement of Access

Control Policies

Peter Amthor

Distributed and Operating Systems Group
Technische Universitat Ilmenau
peteramthor@tu-ilmenau.de

2023-09-28

Peter Amthor .« Language-Support for Correct and Reliable Enforcement of Access Control Policies

mailto:peter.amthor@tu-ilmenau.de

