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Unikernels

Specialized for use cause
Tiny images

One process per image
No isolation necessary

Single address space operating system
No address space context switch

Single privilege level
No privilege context switch

System calls are just function calls
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Hypervisor

LibOS
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The Hermit Operating System

Unikernel Project
Written in Rust
Official tier 3 Rust target for Rust application
GCC fork for C applications

Features
Network (virtio, RTL8139)
Multi-core support
Easily configurable

Architectures
x86-64 (primary)
AArch64 (emerging)
64-bit RISC-V (upcoming)
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Rust’s raison d’être

Memory Safety
No more out-of-bounds accesses
No more use-after-free errors
No more data races
. . .

Could prevent 65 % of security vulnerabilities
(https://alexgaynor.net/2020/may/27/science-on-memory-unsafety-and-security/)
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How Rust Guarantees Memory Safety

Safe Rust
Specifically constructed to be statically checked
References are always valid
Memory is always initialized
Aliasing XOR Mutation

Unsafe Rust
Removes some of safe Rust’s restrictions:

Raw pointers
Uninitialized memory
Inline assembly
Unsafe functions
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How Rust Guarantees Memory Safety (cont.)

Undefined Behavior
Program is optimized assuming the absence of UB
Safe Rust is fine
Unsafe Rust may cause issues

Soundness
Unsafe Rust may never break safe Rust’s invariants
A safe Rust function must be sound
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What’s the Problem?

Hermit has been ported from C to Rust
Hermit was sticking to C-isms
Unsynchronized statics
Aliasing AND Mutation (data races)
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What’s the Approach?

Audit unsafe code from the bottom up
Rework fundamentally unsound code
Document safety invariants
Publish modularized solutions
Try to find more UB with tools
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Unsynchronized Statics

static mut IDT: Idt = Idt::new();

fn init() {
let idt = unsafe { &mut IDT };
// Populate IDT entries
// Load IDT

}
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take-static

pub struct TakeStatic<T> {
taken: AtomicBool,
data: UnsafeCell<T>,

}

impl<T> TakeStatic<T> {
pub fn take(&self) -> Option<&mut T> {

if self
.taken
.compare_exchange(false, true, Ordering::Relaxed, Ordering::Relaxed)
.is_ok()

{
Some(unsafe { &mut *self.data.get() })

} else {
None

}
}

}
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Synchronized Statics

take_static! {
static IDT: Idt = Idt::new();

}

fn init() {
let idt: &mut Idt = IDT.take().unwrap();
assert!(IDT.take() == None);
// Populate IDT entries
// Load IDT

}
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What’s the Outcome?

hermit-sync (github.com/hermit-os/hermit-sync)
Sound Bare-metal Rust-style synchronization primitives

SpinMutex

OnceCell

Lazy

TakeStatic

InterruptMutex

InterruptRefCell
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Results

Created, used, and
published the new
count-unsafe tool.

Removed more than 400
unsafe expressions.
Solved real memory safety
issues.
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What’s next?

Rework Drivers, Filesystems, Network.
Continue discussing libraries with the Rust OS-dev
community.
Continue discussing fundamental soundness issues
with Rust’s operational semantics team
(T-opsem).
Research running Hermit on Miri.
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History of Hermit

HermitCore (2015)
Unikernel and Multikernel
Runs side by side with Linux in HPC clusters
HermitCore occupies some cores

Like a hermit crab ;)
Lightweight HermitCore computes
“Heavyweight” Linux drives hardware
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History of Hermit (cont.)

RustyHermit (2018)
Rust is modern and exciting

Rewrite it in Rust (RIIR)
One true toolchain

Easy cross-compilation
Vibrant community

Easy dependencies through central registry
Recently rebranded as Hermit
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