
Towards a Safe and Sound Operating System
Martin Kröning, Jonathan Klimt, Stefan Lankes

Unikernels

Specialized for use cause
Tiny images

One process per image
No isolation necessary

Single address space operating system
No address space context switch

Single privilege level
No privilege context switch

System calls are just function calls

Application

Unikernel Image

Libraries

Hardware

Host OS

Hypervisor

LibOS

2 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

Unikernels

Specialized for use cause
Tiny images

One process per image
No isolation necessary

Single address space operating system
No address space context switch

Single privilege level
No privilege context switch

System calls are just function calls

Application

Unikernel Image

Libraries

Hardware

Host OS

Hypervisor

LibOS

2 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

Unikernels

Specialized for use cause
Tiny images

One process per image
No isolation necessary

Single address space operating system
No address space context switch

Single privilege level
No privilege context switch

System calls are just function calls

Application

Unikernel Image

Libraries

Hardware

Host OS

Hypervisor

LibOS

2 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

Unikernels

Specialized for use cause
Tiny images

One process per image
No isolation necessary

Single address space operating system
No address space context switch

Single privilege level
No privilege context switch

System calls are just function calls

Application

Unikernel Image

Libraries

Hardware

Host OS

Hypervisor

LibOS

2 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

Unikernels

Specialized for use cause
Tiny images

One process per image
No isolation necessary

Single address space operating system
No address space context switch

Single privilege level
No privilege context switch

System calls are just function calls

Application

Unikernel Image

Libraries

Hardware

Host OS

Hypervisor

LibOS

2 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

Unikernels

Specialized for use cause
Tiny images

One process per image
No isolation necessary

Single address space operating system
No address space context switch

Single privilege level
No privilege context switch

System calls are just function calls

Application

Unikernel Image

Libraries

Hardware

Host OS

Hypervisor

LibOS

2 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

Unikernels

Specialized for use cause
Tiny images

One process per image
No isolation necessary

Single address space operating system
No address space context switch

Single privilege level
No privilege context switch

System calls are just function calls

Application

Unikernel Image

Libraries

Hardware

Host OS

Hypervisor

LibOS

2 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

The Hermit Operating System

Unikernel Project
Written in Rust
Official tier 3 Rust target for Rust application
GCC fork for C applications

Features
Network (virtio, RTL8139)
Multi-core support
Easily configurable

Architectures
x86-64 (primary)
AArch64 (emerging)
64-bit RISC-V (upcoming)

3 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

The Hermit Operating System

Unikernel Project

Written in Rust
Official tier 3 Rust target for Rust application
GCC fork for C applications

Features
Network (virtio, RTL8139)
Multi-core support
Easily configurable

Architectures
x86-64 (primary)
AArch64 (emerging)
64-bit RISC-V (upcoming)

3 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

The Hermit Operating System

Unikernel Project
Written in Rust

Official tier 3 Rust target for Rust application
GCC fork for C applications

Features
Network (virtio, RTL8139)
Multi-core support
Easily configurable

Architectures
x86-64 (primary)
AArch64 (emerging)
64-bit RISC-V (upcoming)

3 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

The Hermit Operating System

Unikernel Project
Written in Rust
Official tier 3 Rust target for Rust application

GCC fork for C applications

Features
Network (virtio, RTL8139)
Multi-core support
Easily configurable

Architectures
x86-64 (primary)
AArch64 (emerging)
64-bit RISC-V (upcoming)

3 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

The Hermit Operating System

Unikernel Project
Written in Rust
Official tier 3 Rust target for Rust application
GCC fork for C applications

Features
Network (virtio, RTL8139)
Multi-core support
Easily configurable

Architectures
x86-64 (primary)
AArch64 (emerging)
64-bit RISC-V (upcoming)

3 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

The Hermit Operating System

Unikernel Project
Written in Rust
Official tier 3 Rust target for Rust application
GCC fork for C applications

Features
Network (virtio, RTL8139)
Multi-core support
Easily configurable

Architectures
x86-64 (primary)
AArch64 (emerging)
64-bit RISC-V (upcoming)

3 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

The Hermit Operating System

Unikernel Project
Written in Rust
Official tier 3 Rust target for Rust application
GCC fork for C applications

Features
Network (virtio, RTL8139)
Multi-core support
Easily configurable

Architectures
x86-64 (primary)
AArch64 (emerging)
64-bit RISC-V (upcoming)

3 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

Rust’s raison d’être

Memory Safety
No more out-of-bounds accesses
No more use-after-free errors
No more data races
. . .

Could prevent 65 % of security vulnerabilities
(https://alexgaynor.net/2020/may/27/science-on-memory-unsafety-and-security/)

4 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

 At least 65% of security vulnerabilities in projects using memory-unsafe PLs are caused by memory unsafety.
 - Android
 - iOS and macOS
 - Chrome
 - All of Microsoft's codebases
 - Ubuntu's Linux kernel

https://alexgaynor.net/2020/may/27/science-on-memory-unsafety-and-security/

Rust’s raison d’être

Memory Safety

No more out-of-bounds accesses
No more use-after-free errors
No more data races
. . .

Could prevent 65 % of security vulnerabilities
(https://alexgaynor.net/2020/may/27/science-on-memory-unsafety-and-security/)

4 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

 At least 65% of security vulnerabilities in projects using memory-unsafe PLs are caused by memory unsafety.
 - Android
 - iOS and macOS
 - Chrome
 - All of Microsoft's codebases
 - Ubuntu's Linux kernel

https://alexgaynor.net/2020/may/27/science-on-memory-unsafety-and-security/

Rust’s raison d’être

Memory Safety
No more out-of-bounds accesses

No more use-after-free errors
No more data races
. . .

Could prevent 65 % of security vulnerabilities
(https://alexgaynor.net/2020/may/27/science-on-memory-unsafety-and-security/)

4 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

 At least 65% of security vulnerabilities in projects using memory-unsafe PLs are caused by memory unsafety.
 - Android
 - iOS and macOS
 - Chrome
 - All of Microsoft's codebases
 - Ubuntu's Linux kernel

https://alexgaynor.net/2020/may/27/science-on-memory-unsafety-and-security/

Rust’s raison d’être

Memory Safety
No more out-of-bounds accesses
No more use-after-free errors

No more data races
. . .

Could prevent 65 % of security vulnerabilities
(https://alexgaynor.net/2020/may/27/science-on-memory-unsafety-and-security/)

4 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

 At least 65% of security vulnerabilities in projects using memory-unsafe PLs are caused by memory unsafety.
 - Android
 - iOS and macOS
 - Chrome
 - All of Microsoft's codebases
 - Ubuntu's Linux kernel

https://alexgaynor.net/2020/may/27/science-on-memory-unsafety-and-security/

Rust’s raison d’être

Memory Safety
No more out-of-bounds accesses
No more use-after-free errors
No more data races

. . .
Could prevent 65 % of security vulnerabilities
(https://alexgaynor.net/2020/may/27/science-on-memory-unsafety-and-security/)

4 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

 At least 65% of security vulnerabilities in projects using memory-unsafe PLs are caused by memory unsafety.
 - Android
 - iOS and macOS
 - Chrome
 - All of Microsoft's codebases
 - Ubuntu's Linux kernel

https://alexgaynor.net/2020/may/27/science-on-memory-unsafety-and-security/

Rust’s raison d’être

Memory Safety
No more out-of-bounds accesses
No more use-after-free errors
No more data races
. . .

Could prevent 65 % of security vulnerabilities
(https://alexgaynor.net/2020/may/27/science-on-memory-unsafety-and-security/)

4 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

 At least 65% of security vulnerabilities in projects using memory-unsafe PLs are caused by memory unsafety.
 - Android
 - iOS and macOS
 - Chrome
 - All of Microsoft's codebases
 - Ubuntu's Linux kernel

https://alexgaynor.net/2020/may/27/science-on-memory-unsafety-and-security/

Rust’s raison d’être

Memory Safety
No more out-of-bounds accesses
No more use-after-free errors
No more data races
. . .

Could prevent 65 % of security vulnerabilities
(https://alexgaynor.net/2020/may/27/science-on-memory-unsafety-and-security/)

4 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

 At least 65% of security vulnerabilities in projects using memory-unsafe PLs are caused by memory unsafety.
 - Android
 - iOS and macOS
 - Chrome
 - All of Microsoft's codebases
 - Ubuntu's Linux kernel

https://alexgaynor.net/2020/may/27/science-on-memory-unsafety-and-security/

How Rust Guarantees Memory Safety

Safe Rust
Specifically constructed to be statically checked
References are always valid
Memory is always initialized
Aliasing XOR Mutation

Unsafe Rust
Removes some of safe Rust’s restrictions:

Raw pointers
Uninitialized memory
Inline assembly
Unsafe functions

5 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

How Rust Guarantees Memory Safety

Safe Rust

Specifically constructed to be statically checked
References are always valid
Memory is always initialized
Aliasing XOR Mutation

Unsafe Rust
Removes some of safe Rust’s restrictions:

Raw pointers
Uninitialized memory
Inline assembly
Unsafe functions

5 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

How Rust Guarantees Memory Safety

Safe Rust
Specifically constructed to be statically checked

References are always valid
Memory is always initialized
Aliasing XOR Mutation

Unsafe Rust
Removes some of safe Rust’s restrictions:

Raw pointers
Uninitialized memory
Inline assembly
Unsafe functions

5 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

How Rust Guarantees Memory Safety

Safe Rust
Specifically constructed to be statically checked
References are always valid

Memory is always initialized
Aliasing XOR Mutation

Unsafe Rust
Removes some of safe Rust’s restrictions:

Raw pointers
Uninitialized memory
Inline assembly
Unsafe functions

5 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

How Rust Guarantees Memory Safety

Safe Rust
Specifically constructed to be statically checked
References are always valid
Memory is always initialized

Aliasing XOR Mutation

Unsafe Rust
Removes some of safe Rust’s restrictions:

Raw pointers
Uninitialized memory
Inline assembly
Unsafe functions

5 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

How Rust Guarantees Memory Safety

Safe Rust
Specifically constructed to be statically checked
References are always valid
Memory is always initialized
Aliasing XOR Mutation

Unsafe Rust
Removes some of safe Rust’s restrictions:

Raw pointers
Uninitialized memory
Inline assembly
Unsafe functions

5 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

How Rust Guarantees Memory Safety

Safe Rust
Specifically constructed to be statically checked
References are always valid
Memory is always initialized
Aliasing XOR Mutation

Unsafe Rust
Removes some of safe Rust’s restrictions:

Raw pointers
Uninitialized memory
Inline assembly
Unsafe functions

5 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

How Rust Guarantees Memory Safety

Safe Rust
Specifically constructed to be statically checked
References are always valid
Memory is always initialized
Aliasing XOR Mutation

Unsafe Rust
Removes some of safe Rust’s restrictions:

Raw pointers

Uninitialized memory
Inline assembly
Unsafe functions

5 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

How Rust Guarantees Memory Safety

Safe Rust
Specifically constructed to be statically checked
References are always valid
Memory is always initialized
Aliasing XOR Mutation

Unsafe Rust
Removes some of safe Rust’s restrictions:

Raw pointers
Uninitialized memory

Inline assembly
Unsafe functions

5 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

How Rust Guarantees Memory Safety

Safe Rust
Specifically constructed to be statically checked
References are always valid
Memory is always initialized
Aliasing XOR Mutation

Unsafe Rust
Removes some of safe Rust’s restrictions:

Raw pointers
Uninitialized memory
Inline assembly

Unsafe functions

5 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

How Rust Guarantees Memory Safety

Safe Rust
Specifically constructed to be statically checked
References are always valid
Memory is always initialized
Aliasing XOR Mutation

Unsafe Rust
Removes some of safe Rust’s restrictions:

Raw pointers
Uninitialized memory
Inline assembly
Unsafe functions

5 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

How Rust Guarantees Memory Safety (cont.)

Undefined Behavior
Program is optimized assuming the absence of UB
Safe Rust is fine
Unsafe Rust may cause issues

Soundness
Unsafe Rust may never break safe Rust’s invariants
A safe Rust function must be sound

6 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

How Rust Guarantees Memory Safety (cont.)

Undefined Behavior

Program is optimized assuming the absence of UB
Safe Rust is fine
Unsafe Rust may cause issues

Soundness
Unsafe Rust may never break safe Rust’s invariants
A safe Rust function must be sound

6 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

How Rust Guarantees Memory Safety (cont.)

Undefined Behavior
Program is optimized assuming the absence of UB

Safe Rust is fine
Unsafe Rust may cause issues

Soundness
Unsafe Rust may never break safe Rust’s invariants
A safe Rust function must be sound

6 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

How Rust Guarantees Memory Safety (cont.)

Undefined Behavior
Program is optimized assuming the absence of UB
Safe Rust is fine

Unsafe Rust may cause issues

Soundness
Unsafe Rust may never break safe Rust’s invariants
A safe Rust function must be sound

6 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

How Rust Guarantees Memory Safety (cont.)

Undefined Behavior
Program is optimized assuming the absence of UB
Safe Rust is fine
Unsafe Rust may cause issues

Soundness
Unsafe Rust may never break safe Rust’s invariants
A safe Rust function must be sound

6 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

How Rust Guarantees Memory Safety (cont.)

Undefined Behavior
Program is optimized assuming the absence of UB
Safe Rust is fine
Unsafe Rust may cause issues

Soundness

Unsafe Rust may never break safe Rust’s invariants
A safe Rust function must be sound

6 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

How Rust Guarantees Memory Safety (cont.)

Undefined Behavior
Program is optimized assuming the absence of UB
Safe Rust is fine
Unsafe Rust may cause issues

Soundness
Unsafe Rust may never break safe Rust’s invariants

A safe Rust function must be sound

6 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

How Rust Guarantees Memory Safety (cont.)

Undefined Behavior
Program is optimized assuming the absence of UB
Safe Rust is fine
Unsafe Rust may cause issues

Soundness
Unsafe Rust may never break safe Rust’s invariants
A safe Rust function must be sound

6 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

What’s the Problem?

Hermit has been ported from C to Rust
Hermit was sticking to C-isms
Unsynchronized statics
Aliasing AND Mutation (data races)

7 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

What’s the Problem?

Hermit has been ported from C to Rust

Hermit was sticking to C-isms
Unsynchronized statics
Aliasing AND Mutation (data races)

7 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

What’s the Problem?

Hermit has been ported from C to Rust
Hermit was sticking to C-isms

Unsynchronized statics
Aliasing AND Mutation (data races)

7 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

What’s the Problem?

Hermit has been ported from C to Rust
Hermit was sticking to C-isms
Unsynchronized statics

Aliasing AND Mutation (data races)

7 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

What’s the Problem?

Hermit has been ported from C to Rust
Hermit was sticking to C-isms
Unsynchronized statics
Aliasing AND Mutation (data races)

7 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

What’s the Approach?

Audit unsafe code from the bottom up
Rework fundamentally unsound code
Document safety invariants
Publish modularized solutions
Try to find more UB with tools

8 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

 - Document Safety invariants - Spin solutions into separate libraries

What’s the Approach?

Audit unsafe code from the bottom up

Rework fundamentally unsound code
Document safety invariants
Publish modularized solutions
Try to find more UB with tools

8 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

 - Document Safety invariants - Spin solutions into separate libraries

What’s the Approach?

Audit unsafe code from the bottom up
Rework fundamentally unsound code

Document safety invariants
Publish modularized solutions
Try to find more UB with tools

8 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

 - Document Safety invariants - Spin solutions into separate libraries

What’s the Approach?

Audit unsafe code from the bottom up
Rework fundamentally unsound code
Document safety invariants

Publish modularized solutions
Try to find more UB with tools

8 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

 - Document Safety invariants - Spin solutions into separate libraries

What’s the Approach?

Audit unsafe code from the bottom up
Rework fundamentally unsound code
Document safety invariants
Publish modularized solutions

Try to find more UB with tools

8 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

 - Document Safety invariants - Spin solutions into separate libraries

What’s the Approach?

Audit unsafe code from the bottom up
Rework fundamentally unsound code
Document safety invariants
Publish modularized solutions
Try to find more UB with tools

8 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

 - Document Safety invariants - Spin solutions into separate libraries

Unsynchronized Statics

static mut IDT: Idt = Idt::new();

fn init() {
let idt = unsafe { &mut IDT };
// Populate IDT entries
// Load IDT

}

9 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

take-static

pub struct TakeStatic<T> {
taken: AtomicBool,
data: UnsafeCell<T>,

}

impl<T> TakeStatic<T> {
pub fn take(&self) -> Option<&mut T> {

if self
.taken
.compare_exchange(false, true, Ordering::Relaxed, Ordering::Relaxed)
.is_ok()

{
Some(unsafe { &mut *self.data.get() })

} else {
None

}
}

}

10 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

Synchronized Statics

take_static! {
static IDT: Idt = Idt::new();

}

fn init() {
let idt: &mut Idt = IDT.take().unwrap();
assert!(IDT.take() == None);
// Populate IDT entries
// Load IDT

}

11 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

What’s the Outcome?

hermit-sync (github.com/hermit-os/hermit-sync)
Sound Bare-metal Rust-style synchronization primitives

SpinMutex

OnceCell

Lazy

TakeStatic

InterruptMutex

InterruptRefCell

12 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

https://github.com/hermit-os/hermit-sync

What’s the Outcome?

hermit-sync (github.com/hermit-os/hermit-sync)
Sound Bare-metal Rust-style synchronization primitives

SpinMutex

OnceCell

Lazy

TakeStatic

InterruptMutex

InterruptRefCell

12 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

https://github.com/hermit-os/hermit-sync

What’s the Outcome?

hermit-sync (github.com/hermit-os/hermit-sync)
Sound Bare-metal Rust-style synchronization primitives

SpinMutex

OnceCell

Lazy

TakeStatic

InterruptMutex

InterruptRefCell

12 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

https://github.com/hermit-os/hermit-sync

What’s the Outcome?

hermit-sync (github.com/hermit-os/hermit-sync)
Sound Bare-metal Rust-style synchronization primitives

SpinMutex

OnceCell

Lazy

TakeStatic

InterruptMutex

InterruptRefCell

12 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

https://github.com/hermit-os/hermit-sync

What’s the Outcome?

hermit-sync (github.com/hermit-os/hermit-sync)
Sound Bare-metal Rust-style synchronization primitives

SpinMutex

OnceCell

Lazy

TakeStatic

InterruptMutex

InterruptRefCell

12 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

https://github.com/hermit-os/hermit-sync

What’s the Outcome?

hermit-sync (github.com/hermit-os/hermit-sync)
Sound Bare-metal Rust-style synchronization primitives

SpinMutex

OnceCell

Lazy

TakeStatic

InterruptMutex

InterruptRefCell

12 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

https://github.com/hermit-os/hermit-sync

What’s the Outcome?

hermit-sync (github.com/hermit-os/hermit-sync)
Sound Bare-metal Rust-style synchronization primitives

SpinMutex

OnceCell

Lazy

TakeStatic

InterruptMutex

InterruptRefCell

12 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

https://github.com/hermit-os/hermit-sync

What’s the Outcome?

hermit-sync (github.com/hermit-os/hermit-sync)
Sound Bare-metal Rust-style synchronization primitives

SpinMutex

OnceCell

Lazy

TakeStatic

InterruptMutex

InterruptRefCell

12 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

https://github.com/hermit-os/hermit-sync

Results

Created, used, and
published the new
count-unsafe tool.

Removed more than 400
unsafe expressions.
Solved real memory safety
issues.

6

54

10

−9

−
25

−8 −
30

−
15

−
13

−6 −3 −6
−1

−
58

3

−
86

5

−
125

−
15 −2 −
21

−
48

−6 −6

544

545

565

574

586

589

599

600

607

610

611

612

614

616

618

621

623

628

629

632

645

646

648

653

−120

−100

−80

−60

−40

−20

0

20

40

60

Safety Unsafe

PR

Ex
pr
es
si
on

s

13 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

Results

Created, used, and
published the new
count-unsafe tool.

Removed more than 400
unsafe expressions.
Solved real memory safety
issues.

6

54

10

−9

−
25

−8 −
30

−
15

−
13

−6 −3 −6
−1

−
58

3

−
86

5

−
125

−
15 −2 −
21

−
48

−6 −6

544

545

565

574

586

589

599

600

607

610

611

612

614

616

618

621

623

628

629

632

645

646

648

653

−120

−100

−80

−60

−40

−20

0

20

40

60

Safety Unsafe

PR

Ex
pr
es
si
on

s

13 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

Results

Created, used, and
published the new
count-unsafe tool.
Removed more than 400
unsafe expressions.

Solved real memory safety
issues.

6

54

10

−9

−
25

−8 −
30

−
15

−
13

−6 −3 −6
−1

−
58

3

−
86

5

−
125

−
15 −2 −
21

−
48

−6 −6

544

545

565

574

586

589

599

600

607

610

611

612

614

616

618

621

623

628

629

632

645

646

648

653

−120

−100

−80

−60

−40

−20

0

20

40

60

Safety Unsafe

PR

Ex
pr
es
si
on

s

13 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

Results

Created, used, and
published the new
count-unsafe tool.
Removed more than 400
unsafe expressions.
Solved real memory safety
issues.

6

54

10

−9

−
25

−8 −
30

−
15

−
13

−6 −3 −6
−1

−
58

3

−
86

5

−
125

−
15 −2 −
21

−
48

−6 −6

544

545

565

574

586

589

599

600

607

610

611

612

614

616

618

621

623

628

629

632

645

646

648

653

−120

−100

−80

−60

−40

−20

0

20

40

60

Safety Unsafe

PR

Ex
pr
es
si
on

s

13 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

What’s next?

Rework Drivers, Filesystems, Network.
Continue discussing libraries with the Rust OS-dev
community.
Continue discussing fundamental soundness issues
with Rust’s operational semantics team
(T-opsem).
Research running Hermit on Miri.

14 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

What’s next?

Rework Drivers, Filesystems, Network.

Continue discussing libraries with the Rust OS-dev
community.
Continue discussing fundamental soundness issues
with Rust’s operational semantics team
(T-opsem).
Research running Hermit on Miri.

14 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

What’s next?

Rework Drivers, Filesystems, Network.
Continue discussing libraries with the Rust OS-dev
community.

Continue discussing fundamental soundness issues
with Rust’s operational semantics team
(T-opsem).
Research running Hermit on Miri.

14 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

What’s next?

Rework Drivers, Filesystems, Network.
Continue discussing libraries with the Rust OS-dev
community.
Continue discussing fundamental soundness issues
with Rust’s operational semantics team
(T-opsem).

Research running Hermit on Miri.

14 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

What’s next?

Rework Drivers, Filesystems, Network.
Continue discussing libraries with the Rust OS-dev
community.
Continue discussing fundamental soundness issues
with Rust’s operational semantics team
(T-opsem).
Research running Hermit on Miri.

14 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

Acknowledgements

This work was supported by the European
Union’s Horizon Europe research and
innovation programme under Grant
Agreement No. 101070118 (NEMO).

15 of 16
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

Thank you for your kind attention!

Martin Kröning, Jonathan Klimt, Stefan Lankes – martin.kroening@eonerc.rwth-aachen.de

Institute for Automation of Complex Power Systems
E.ON Energy Research Center, RWTH Aachen University
Mathieustraße 10
52074 Aachen

http://hermit-os.org

mailto:martin.kroening@eonerc.rwth-aachen.de
http://hermit-os.org

History of Hermit

HermitCore (2015)
Unikernel and Multikernel
Runs side by side with Linux in HPC clusters
HermitCore occupies some cores

Like a hermit crab ;)
Lightweight HermitCore computes
“Heavyweight” Linux drives hardware

1 of 2
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

History of Hermit (cont.)

RustyHermit (2018)
Rust is modern and exciting

Rewrite it in Rust (RIIR)
One true toolchain

Easy cross-compilation
Vibrant community

Easy dependencies through central registry
Recently rebranded as Hermit

2 of 2
Towards a Safe and Sound Operating System
28/09/2023 | Martin Kröning, Jonathan Klimt, Stefan Lankes | ACS

	Title page
	Introduction
	Soundness
	Hermit Rework
	Synchronization Primitives
	Results
	Conclusion
	Appendix
	History of Hermit

