
28. September 2023

OS Implications for Confidential
Computing
Jörg Rödel <jroedel@suse.com>

mailto:jroedel@suse.com

Confidential Computing
Definition

2

Confidential Computing Definition

• Depending on type of Hypervisor (HV) isolation

• Different definitions for Confidential Computing (CoCo):

• Software Isolation: HV is isolated from guest by software means

• Hardware Isolation: HV uses of hardware extensions to isolate guest

• This talk will focus on Confidential Computing using Hardware Isolation

• Newer Hardware supports Trusted Execution Environments (TEEs)

• Attestation is integral part of CoCo

3

Trusted Execution Base

Hardware

Guest OS

Host OS / Hypervisor

Trusted Execution Base

Hardware

Guest OS
Trusted ✅

Host OS / Hypervisor

Trusted Execution Base

Hardware

Guest OS
Trusted ✅

Host OS / Hypervisor
Trusted ✅

Trusted Execution Base

Hardware

Guest OS
Trusted ✅

Host OS / Hypervisor
Trusted ✅

Trusted ✅

Trusted Execution Base

Hardware

Guest OS
Trusted ✅

Host OS / Hypervisor
Trusted ✅

Trusted ✅

Host OS / Hypervisor
Untrusted 🚫

C
on

fid
en

tia
l C

om
pu

tin
g

Hypervisor Guest Interface

Hypervisor Guest OS

Memory Management

Intercept Handling

Device Emulation

IRQ Injection

Memory Management

6

Memory Management

• HV allocates memory for guest usage

• Can read/write arbitrary guest memory at any time

• Some HV map all guest memory all the time

• Others use on-demand mappings

• Malicious HV could use that to steal data and/or modify code

7

Case Study: AMD Secure Encrypted Virtualization

• Confidential Computing in stages - building on each other

• Secure Encrypted Virtualization (SEV) - Guest memory encryption

Guest Memory Encryption

Guest OSGuest OS

Name: John Doe

Card Number: 1234 5678 9012 3456

Name: Jane Doe

Card Number: 9876 6543 2109 8765

…

Guest Memory Encryption

Guest OSGuest OS

Name: John Doe

Card Number: 1234 5678 9012 3456

Name: Jane Doe

Card Number: 9876 6543 2109 8765

…

Guest OS

OS Implications

• OS needs to be aware of shared and private (encrypted) memory

• Can decide which memory is shared with the HV

• Sharing implementations:

• Page-table based: Shared/Private is a flag in the PTE

• GPA space partitioning: Shared/Private parts of the GPA space

• OS needs changes in Page-table, MMIO, and DMA memory allocation code

• HV can still do memory replay and remapping attacks

10

Hypervisor Guest Interface

Hypervisor Guest OS

Memory Management

Intercept Handling

Device Emulation

IRQ Injection

Hypervisor Guest Interface

Hypervisor Guest OS

Memory Management

Intercept Handling

Device Emulation

IRQ Injection

Memory Management

Intercept Handling

12

Intercept Handling

• For intercept handling HV needs access to guest registers

• Registers can be implicit or explicit instruction parameters

• For instruction emulation the HV needs to update guest registers

• Malicous HV could attack the guest:

• Changing control flow by changing IP or SP

• Steal secret data, e.g. AES keys stored in FPU registers

13

Case Study: AMD Secure Encrypted Virtualization

• Confidential Computing in stages - building on each other

• Secure Encrypted Virtualization (SEV) - Guest memory encryption

• SEV Encrypted State (SEV-ES) - Guest register encryption

SEV-ES Guest-Host Flow

15

Guest OS

Host OS / HV

CPUID

Decoding Get Data Update State

…

Execution Flow

SEV-ES Guest-Host Flow

15

Guest OS

Host OS / HV

CPUID Decoding

Get Data Update State

…

Execution Flow

SEV-ES Guest-Host Flow

15

Guest OS

Host OS / HV

CPUID Decoding

Get Data

Update State …

Execution Flow

SEV-ES Guest-Host Flow

15

Guest OS

Host OS / HV

CPUID Decoding

Get Data

Update State …

Execution Flow

Call HV

SEV-ES Guest-Host Flow

15

Guest OS

Host OS / HV

CPUID Decoding

Get Data

Update State …

Execution Flow

Decoding Update StateCall HV

Exception Handler

SEV-ES Guest-Host Flow

15

Guest OS

Host OS / HV

CPUID Decoding

Get Data

Update State …

Execution Flow

Decoding Update StateCall HV

OS Implications

• OS needs to implement new exception handler

• Will handle intercepts in trusted guest context

• Uses hyper-calls to exchange data with HV

• Exception handler needed very early in OS boot

• Before first intercepted instruction is executed

• Exception handler usually includes a full instruction decoder

16

Hypervisor Guest Interface

Hypervisor Guest OS

Memory Management

Intercept Handling

Device Emulation

IRQ Injection

Memory Management

Intercept Handling

Hypervisor Guest Interface

Hypervisor Guest OS

Memory Management

Intercept Handling

Device Emulation

IRQ Injection

Memory Management

Intercept Handling

Hypervisor Guest Interface

Hypervisor Guest OS

Memory Management

Intercept Handling

Device Emulation

IRQ Injection

Memory Management

Intercept HandlingIntercept Handling✅

Memory Management Revisited

18

Memory Management Revisited

• Using only memory encryption leaves attack vectors open

• Memory replay: HV replays an old version of an encrypted page

• Memory remapping: HV maps encrypted page at different GPA

• Not possible to migitate

• But become detectable via hardware extension

19

Case Study: AMD Secure Encrypted Virtualization

• Confidential Computing in stages - building on each other

• Secure Encrypted Virtualization (SEV) - Guest memory encryption

• SEV Encrypted State (SEV-ES) - Guest register encryption

• SEV Secure Nested Paging (SEV-SNP)— Introducing page states

Page States in AMD SEV-SNP

Hypervisor Guest Invalid

Guest Valid

RMPUPDATE

PV
AL

ID
AT

E

RMPU
PD

AT
E

OS Implications

• OS needs to keep track of page states

• Hypervisor vs. Guest-invalid vs. Guest-valid

• Keeping track allows to reliably detect malicious HV behavior

• OS also needs a new paravirtual interface to HV

• Some page-state changes need to be coordinated with HV

• OS needs to tell HV when pages switch between HV and Guest-Invalid

22

Hypervisor Guest Interface

Hypervisor Guest OS

Memory Management

Intercept Handling

Device Emulation

IRQ Injection

Memory Management

Intercept Handling✅

Hypervisor Guest Interface

Hypervisor Guest OS

Memory Management

Intercept Handling

Device Emulation

IRQ Injection

Memory Management

Intercept Handling✅

Memory Management✅

Interrupt Injection

24

Interrupt Injection

• HV can inject interrupts at any time

• Usually the HV tracks when the guest is ready for IRQs

• IRQs enabled

• No Interrupt shadow

• OSes disable IRQs when not able to handle them

• Malicious HV could inject IRQs while the guest is in a critical state

• Could be used to change control flow in guest and reveal secrets

25

Case Study: AMD Secure Encrypted Virtualization

• Confidential Computing in stages - building on each other

• Secure Encrypted Virtualization (SEV) - Guest memory encryption

• SEV Encrypted State (SEV-ES) - Guest register encryption

• SEV Secure Nested Paging (SEV-SNP) - Introducing page states

• SEV-SNP Secure Interrupt Injection - Guest is responsible for
delivering IRQs

SEV-SNP Secure Interrupt Injection

• When enabled HV can only inject one event: #HV

• Guest OS needs to be prepared to receive this event at any time

• Needs to be an IST vector

• PV protocol used to communicate which event is delivered

• Also involves software blocking of new #HV events

27

OS Implications

• OS needs to implement handler for #HV and harden it

• Must be IST

• Must support nesting and detection for malicious injection

• OS needs to track when IRQ handlers can run and deliver events itself

• Instrumentation of IRQ enable/disable events

• Manual IRQ handler launching with stack switching

28

Hypervisor Guest Interface

Hypervisor Guest OS

Memory Management

Intercept Handling

Device Emulation

IRQ Injection

Memory Management

Intercept Handling✅

Memory Management✅

Hypervisor Guest Interface

Hypervisor Guest OS

Memory Management

Intercept Handling

Device Emulation

IRQ Injection

Memory Management

Intercept Handling✅

Memory Management✅

Hypervisor Guest Interface

Hypervisor Guest OS

Memory Management

Intercept Handling

Device Emulation

IRQ Injection

Memory Management

Intercept Handling✅

Memory Management✅

IRQ Injection ✅

Device Emulation

30

Device Emulation

• All HV-emulated are treated as insecure

• Some devices carry security sensitive state: TPM

• Two approaches:

• Device driver hardening

• In-guest Paravisor

31

Device Driver Hardening

• Often done via device driver fuzzing

• Implemented using HV-side fuzzers

• Had some success in finding bugs in device drivers

• Patches are sent to the Linux kernel for device driver hardening

• But, overall, a difficult approach which is never finished

32

In-Guest Paravisor

• Uses hardware capabilities for isolation within TEE

• AMD SEV-SNP VM Privilege Levels (VMPLs)

• VMPLs allow memory separation within an SEV-SNP guest

• 4 Levels - each with its own CPU state

• Use cases:

• Make guest memory inaccessible to OS

• Securely move HV functionality into TEE

33

OS Implications

• OS needs to harden device drivers

• Involves continuous fuzzing and code review

• For paravisor support OS needs implement PV calls to paravisor

• Specific protocol using shared memory

• Additional protocols for emulated devices

34

Hypervisor Guest Interface

Hypervisor Guest OS

Memory Management

Intercept Handling

Device Emulation

Memory Management

Intercept Handling✅

Memory Management✅

IRQ Injection ✅

Device Emulation

Hypervisor Guest Interface

Hypervisor Guest OS

Memory Management

Intercept Handling

Device Emulation

Memory Management

Intercept Handling✅

Memory Management✅

IRQ Injection ✅

Device Emulation

Hypervisor Guest Interface

Hypervisor Guest OS

Memory Management

Intercept Handling

Device Emulation

Memory Management

Intercept Handling✅

Memory Management✅

IRQ Injection ✅

Device EmulationDevice Emulation ✅

COCONUT Secure VM Service Module

• COCONUT Secure VM Service Module (SVSM) currently under development

• OS-level project written in stable Rust

• Will support unprivileged exection mode (CPL3)

• First use-case: Secure TPM 2.0 emulation for CoCo guests

• Needed for attestation

• Can emulate more devices in the future

• Allows to move some CoCo specifics from OS into Paravisor

36

COCONUT Secure VM Service Module

37

https://github.com/coconut-svsm/svsm/

CoCo Virtualization Stack Vision

Hypervisor
Intercept Handling Device Emulation

Memory Management✅

COCONUT SVSM

Guest OS
Intercept Handling✅

IRQ Injection ✅ Device Emulation ✅TMP 2.0 ✅

Thank You! Questions?

39

