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Confidential Computing Definition

• Depending on type of Hypervisor (HV) isolation


• Different definitions for Confidential Computing (CoCo):


• Software Isolation: HV is isolated from guest by software means


• Hardware Isolation: HV uses of hardware extensions to isolate guest


• This talk will focus on Confidential Computing using Hardware Isolation


• Newer Hardware supports Trusted Execution Environments (TEEs)


• Attestation is integral part of CoCo
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Memory Management

• HV allocates memory for guest usage


• Can read/write arbitrary guest memory at any time


• Some HV map all guest memory all the time


• Others use on-demand mappings


• Malicious HV could use that to steal data and/or modify code
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Case Study: AMD Secure Encrypted Virtualization

• Confidential Computing in stages - building on each other


• Secure Encrypted Virtualization (SEV) - Guest memory encryption
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OS Implications

• OS needs to be aware of shared and private (encrypted) memory


• Can decide which memory is shared with the HV


• Sharing implementations:


• Page-table based: Shared/Private is a flag in the PTE


• GPA space partitioning: Shared/Private parts of the GPA space


• OS needs changes in Page-table, MMIO, and DMA memory allocation code


• HV can still do memory replay and remapping attacks
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Intercept Handling
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Intercept Handling

• For intercept handling HV needs access to guest registers


• Registers can be implicit or explicit instruction parameters


• For instruction emulation the HV needs to update guest registers


• Malicous HV could attack the guest:


• Changing control flow by changing IP or SP


• Steal secret data, e.g. AES keys stored in FPU registers
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Case Study: AMD Secure Encrypted Virtualization

• Confidential Computing in stages - building on each other


• Secure Encrypted Virtualization (SEV) - Guest memory encryption


• SEV Encrypted State (SEV-ES) - Guest register encryption
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Exception Handler
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OS Implications

• OS needs to implement new exception handler


• Will handle intercepts in trusted guest context


• Uses hyper-calls to exchange data with HV


• Exception handler needed very early in OS boot


• Before first intercepted instruction is executed


• Exception handler usually includes a full instruction decoder
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Memory Management Revisited

• Using only memory encryption leaves attack vectors open


• Memory replay: HV replays an old version of an encrypted page


• Memory remapping: HV maps encrypted page at different GPA


• Not possible to migitate


• But become detectable via hardware extension
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Case Study: AMD Secure Encrypted Virtualization

• Confidential Computing in stages - building on each other


• Secure Encrypted Virtualization (SEV) - Guest memory encryption


• SEV Encrypted State (SEV-ES) - Guest register encryption


• SEV Secure Nested Paging (SEV-SNP)— Introducing page states
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OS Implications

• OS needs to keep track of page states


• Hypervisor vs. Guest-invalid vs. Guest-valid


• Keeping track allows to reliably detect malicious HV behavior


• OS also needs a new paravirtual interface to HV


• Some page-state changes need to be coordinated with HV


• OS needs to tell HV when pages switch between HV and Guest-Invalid
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Interrupt Injection

• HV can inject interrupts at any time


• Usually the HV tracks when the guest is ready for IRQs


• IRQs enabled


• No Interrupt shadow


• OSes disable IRQs when not able to handle them


• Malicious HV could inject IRQs while the guest is in a critical state


• Could be used to change control flow in guest and reveal secrets
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Case Study: AMD Secure Encrypted Virtualization

• Confidential Computing in stages - building on each other


• Secure Encrypted Virtualization (SEV) - Guest memory encryption


• SEV Encrypted State (SEV-ES) - Guest register encryption


• SEV Secure Nested Paging (SEV-SNP) - Introducing page states


• SEV-SNP Secure Interrupt Injection - Guest is responsible for 
delivering IRQs



SEV-SNP Secure Interrupt Injection

• When enabled HV can only inject one event: #HV


• Guest OS needs to be prepared to receive this event at any time


• Needs to be an IST vector


• PV protocol used to communicate which event is delivered


• Also involves software blocking of new #HV events
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OS Implications

• OS needs to implement handler for #HV and harden it


• Must be IST


• Must support nesting and detection for malicious injection


• OS needs to track when IRQ handlers can run and deliver events itself


• Instrumentation of IRQ enable/disable events


• Manual IRQ handler launching with stack switching
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Device Emulation

• All HV-emulated are treated as insecure


• Some devices carry security sensitive state: TPM


• Two approaches:


• Device driver hardening


• In-guest Paravisor
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Device Driver Hardening

• Often done via device driver fuzzing


• Implemented using HV-side fuzzers


• Had some success in finding bugs in device drivers


• Patches are sent to the Linux kernel for device driver hardening


• But, overall, a difficult approach which is never finished
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In-Guest Paravisor

• Uses hardware capabilities for isolation within TEE


• AMD SEV-SNP VM Privilege Levels (VMPLs)


• VMPLs allow memory separation within an SEV-SNP guest


• 4 Levels - each with its own CPU state


• Use cases:


• Make guest memory inaccessible to OS


• Securely move HV functionality into TEE
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OS Implications

• OS needs to harden device drivers


• Involves continuous fuzzing and code review


• For paravisor support OS needs implement PV calls to paravisor


• Specific protocol using shared memory


• Additional protocols for emulated devices
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COCONUT Secure VM Service Module

• COCONUT Secure VM Service Module (SVSM) currently under development


• OS-level project written in stable Rust


• Will support unprivileged exection mode (CPL3)


• First use-case: Secure TPM 2.0 emulation for CoCo guests


• Needed for attestation


• Can emulate more devices in the future


• Allows to move some CoCo specifics from OS into Paravisor
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COCONUT Secure VM Service Module
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https://github.com/coconut-svsm/svsm/



CoCo Virtualization Stack Vision
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Thank You! Questions?
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