

Per-Process Memory Bandwidth Management for Heterogeneous Memory Systems

Lukas Werling, Daniel Habicht, Frank Bellosa

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

www.kit.edu

KIT Operating Systems Group

DAX with PM and CXL: Direct mappings not just to DRAM

Very different behavior

Motivation

PM: parallel writes hurt overall performance

Motivation

DAX with PM and CXL: Direct mappings not just to DRAM

- Very different behavior
- PM: parallel writes hurt overall performance

Memory Bandwidth Monitoring Goals

arbitrary devices

process association

Uncore

Cores

Uncore

Approach: Sampling Stores

- Stores: Intel PEBS
 - Per-core counters
 - Capture additional information every Nth instruction
 - Process sampling buffer regularly (1-6 samples)
- Loads: normal L3 miss counters
 Distinguish DRAM/PM

writes[type] += access_size * sampling_interval

Approach: Interface for Policies

- Challenge: Access current data at low latency
- Solution: Shared buffers
 - Data for running process
 - Lock-free access
 - Enables user-space policies
- Additional access via /proc

Work in Progress: Policies

Evaluation: Accuracy

Evaluation: Accuracy

Evaluation: Overhead

Evaluation: Overhead

Average Processing Time for Writing 1 GiB

Evaluation: Latency

Distribution of DRAM/PM Write Event Latency (PEBS Buffer Size = 1)

Evaluation: Latency

Distribution of DRAM/PM Write Event Latency (PEBS Buffer Size = 1)

Distribution of PM Write Estimation Update Latency (PEBS Buffer Size = 1)

Evaluation: Latency

Distribution of DRAM/PM Write Event Latency (PEBS Buffer Size = 1) Distribution of PM Write Estimation Update Latency (PEBS Buffer Size = 1)

13 2023-09-29 Lukas Werling – Per-Process Memory Bandwidth Management

KIT Operating Systems Group

Discussion

Accuracy

- Problem: cache hits
- Problem: write amplification
- Overhead / latency trade-off
 - Sampling interval
 - Sampling buffer size
- Latency

Simultaneous heterogeneous memory use increases latency

Policies only need relative numbers

Conclusion

Memory bandwidth is a limited resource

- Different technologies
- Monitoring and management important
- Existing tools insufficient

Our solution: Sampling with PEBS

- Process association
- High accuracy, low overhead
- Low-latency interface for throttling

Future work: Throttling policies

