
Enforcing Integrity and Software Fault Isolation
in Microkernels with CHERI

Enforcing Integrity and Software Fault Isolation in Microkernels with CHERI
Georg Lauterbach
Master Thesis‘ Defense // 27 September 2023

Slide 2

Motivation and Technical Background

Enforcing Integrity and Software Fault Isolation in Microkernels with CHERI
Georg Lauterbach
Master Thesis‘ Defense // 27 September 2023

Slide 3

Motivation and Technical Background

0x0

0xFFFF..

“In 2019, 70% of all security vulnerabilities that Microsoft
fixed and assigned a Common Vulnerabilities and Exposures

(CVE) report to were due to memory safety violations.” [1]

[1] https://msrc.microsoft.com/blog/2019/07/we-need-a-safer-systems-programming-language/

Enforcing Integrity and Software Fault Isolation in Microkernels with CHERI
Georg Lauterbach
Master Thesis‘ Defense // 27 September 2023

Slide 4

Motivation and Technical Background

protection
efficient

translation & low
fragmentation

char str[128]

struct socket_t

Enforcing Integrity and Software Fault Isolation in Microkernels with CHERI
Georg Lauterbach
Master Thesis‘ Defense // 27 September 2023

Slide 5

Motivation and Technical Background

base

limit

permissions
points to

pointee

pointer

Enforcing Integrity and Software Fault Isolation in Microkernels with CHERI
Georg Lauterbach
Master Thesis‘ Defense // 27 September 2023

Slide 6

Motivation and Technical Background

pointee

pointer

monotonicity: only valid transformationsintegrity: no partial overwritesprovenance: construct valid capabilities only from other valid capabilities

Enforcing Integrity and Software Fault Isolation in Microkernels with CHERI
Georg Lauterbach
Master Thesis‘ Defense // 27 September 2023

Slide 7

Motivation and Technical Background

CHERI

Full Precision Address [0:63]

Permissions [110:127] Bounds [64:94]Object Type [95:109]

Validity Tag [128]

128

Capability usage rules:

1. Monotonicity

2. Integrity

3. Provenance

Capability

enforced in on top of

Enforcing Integrity and Software Fault Isolation in Microkernels with CHERI
Georg Lauterbach
Master Thesis‘ Defense // 27 September 2023

Slide 8

Motivation and Technical Background

Device Drivers

Scheduling

Virtual Memory

IPC

File System

Basic IPC

Scheduling

Basic Resource Management

App AppApp

App AppApp

Monolithic Kernel Microkernel

user space

kernel space

App AppApp

Enforcing Integrity and Software Fault Isolation in Microkernels with CHERI
Georg Lauterbach
Master Thesis‘ Defense // 27 September 2023

Slide 9

Goals, Concept and Implementation
Evaluation

Conclusion and Discussion

Summary

Motivation and Technical Background

Enforcing Integrity and Software Fault Isolation in Microkernels with CHERI
Georg Lauterbach
Master Thesis‘ Defense // 27 September 2023

Slide 10

Special purpose registers: e.g. Stack Pointer SP => Capability Stack Pointer CSP

General purpose registers X0..X31 => Capability general purpose registers C0..C31

New instructions => e.g. scbnds for setting bounds

C CHERI C

uintptr_t == void * == size_t uintptr_t ≈= void * != size_t

 address_of(void *) = ptraddr_t == size_t

Goals and Concept

resource
management (C)

kernel space (CHERI-ARMv8.2)

boot (asm)
mode switching

(C/asm)

IPC (C) scheduling (C)

virtualization (C)

user space (ARMv8.2)

ABI

• architecture-specific assembly

• new and extended registers

• ABI incompatibility

• types

• alignment

• offsets

• re-derivations (data structures not

composing well with CHERI)

1. Bring memory safety to a microkernel to improve the fault isolation properties

2. Measure the difference in performance of no-capability and capability code

Enforcing Integrity and Software Fault Isolation in Microkernels with CHERI
Georg Lauterbach
Master Thesis‘ Defense // 27 September 2023

Slide 11

Re-Derivations

Validity Tag [128] => 0

129

Validity Tag [128] => 1

Full Precision Address [0:63]

Permissions [110:127] Bounds [64:94]Object Type [95:109]

Enforcing Integrity and Software Fault Isolation in Microkernels with CHERI
Georg Lauterbach
Master Thesis‘ Defense // 27 September 2023

Slide 12

ldr X19, =__entry_stack_base [0] [no] __entry_stack_base

mov X20, KERN_STACK_SIZE [0] [no] __entry_stack_base [0] [no] KERN_STACK_SIZE

cvtd C19, X19 [1] [no] __entry_stack_base [0] [no] KERN_STACK_SIZE

sub X19, X19, X20 [1] [no] __entry_stack_base - KERN_STACK_SIZE [0] [no] KERN_STACK_SIZE

scbnds C19, C19, X20 [1] [yes] __entry_stack_base – KERN_STACK_SIZE [0] [no] KERN_STACK_SIZE

add CSP, C19, X20 [1] [yes] __entry_stack_base – KERN_STACK_SIZE [0] [no] KERN_STACK_SIZE

Setting the Kernel Stack Pointer – A Comparison

ldr X19, =__entry_stack_base

mov SP, X19

[V] [bounds] X19 [V] [bounds] X20

Enforcing Integrity and Software Fault Isolation in Microkernels with CHERI
Georg Lauterbach
Master Thesis‘ Defense // 27 September 2023

Slide 13

Evaluation

Motivation and Technical Background

Goals, Concept and Implementation

Conclusion and Discussion

Summary

Enforcing Integrity and Software Fault Isolation in Microkernels with CHERI
Georg Lauterbach
Master Thesis‘ Defense // 27 September 2023

Slide 14

The Porting Effort

• many trivial changes (type issues, casts)

• few difficult issues (offsets in assembly,

re-derivations for MMIO)

• modest changes in terms of SLoC: 4%

changed | 6% added

• certain core microkernel services

disproportionally affected

• intensive debugging required

• density of changes depend on

idiosyncrasy (correct semantics for

pointer types) of code

N
u

m
b

e
r

o
f

S
o

u
rc

e
 L

in
e

s
o

f
C

o
d

e

Assembly C Header C Source

Additions Deletions

Enforcing Integrity and Software Fault Isolation in Microkernels with CHERI
Georg Lauterbach
Master Thesis‘ Defense // 27 September 2023

Slide 15

ARMv8.2-A

New Fault Isolation Properties

Property CHERI-ARMv8.2-A Both

none spatial & referential no temporal

compartmentalization
of code

none at level of individual C-
language objects

provoking faults unrelated

to memory safety
not caught

provoking memory
safety-related faults

may raise exceptions, mostly
unrelatable to actual error

always raised exceptions

miscellaneous
escape hatches exist
(due to re-derivations),
but could be removed

hardware-enforced
memory safety

Rust?

Enforcing Integrity and Software Fault Isolation in Microkernels with CHERI
Georg Lauterbach
Master Thesis‘ Defense // 27 September 2023

Slide 16

Performance Measurements

• real hardware called Morello: Neoverse N1 (7nm) @ 2.5GHz running ARMv8.2-A (aarch64 only)

• two benchmark configurations

• No-Capability: ARMv8.2 without CHERI capabilities

• Capability: CHERI-ARMv8.2 with all pointers being CHERI capabilities

• three main micro-benchmarks

1. IPC: sending “ping-pong” messages between two tasks

2. Resource management: delegating memory recursively between multiple “threads”

3. Scheduling: run many “threads” and (re-)scheduled them while they are working

• in-depth investigations for IPC

1. Mode switching: going to the kernel and back again

2. Extended IPC benchmark: evaluating overhead of re-derivations

T
1

T
2

T
3

Enforcing Integrity and Software Fault Isolation in Microkernels with CHERI
Georg Lauterbach
Master Thesis‘ Defense // 27 September 2023

Slide 17

IPC Benchmark Results

Same-Core Cross-Core

72%

49.8%

Mode Switching

C
P

U
 C

y
cl

e
 C

o
u

n
t

13.3%

No-Capability Capability CPU Cycle Count: lower is better

Enforcing Integrity and Software Fault Isolation in Microkernels with CHERI
Georg Lauterbach
Master Thesis‘ Defense // 27 September 2023

Slide 18

Resource Management Benchmark Results

RevocationDelegation

Depth Depth

No-Capability Capability
C

P
U

 C
y
cl

e
 C

o
u

n
t

CPU Cycle Count: lower is better

≈ x2

+1.6%
-6%

+4%
+7.8%

Enforcing Integrity and Software Fault Isolation in Microkernels with CHERI
Georg Lauterbach
Master Thesis‘ Defense // 27 September 2023

Slide 19

Conclusion and Discussion

Motivation and Technical Background

Goals, Concept and Implementation

Evaluation

Summary

Enforcing Integrity and Software Fault Isolation in Microkernels with CHERI
Georg Lauterbach
Master Thesis‘ Defense // 27 September 2023

Slide 20

Conclusion and Discussion

• adoption of CHERI is feasible for microkernels but still requires non-trivial efforts

• certain code disproportionally affected

• documentation is scattered, examples are scarce

• main factors for porting: data types and idiosyncrasy of code

• notable performance degradations experienced

• no production-grade optimization of Morello microarchitecture yet

• likely when structures do not compose well with CHERI

• further investigations required

• measure other overheads too (memory, energy consumption, etc.)

• future work involving object capabilities

• fault isolation significantly improved

• memory-safety related faults are caught

• unit and integration tests still required

Enforcing Integrity and Software Fault Isolation in Microkernels with CHERI
Georg Lauterbach
Master Thesis‘ Defense // 27 September 2023

Slide 21

Summary

Motivation and Technical Background

Goals, Concept and Implementation

Evaluation

Conclusion and Discussion

Enforcing Integrity and Software Fault Isolation in Microkernels with CHERI
Georg Lauterbach
Master Thesis‘ Defense // 27 September 2023

Slide 22

Summary

1. Adoption for microkernels is feasible but requires

non-trivial efforts

2. Fault isolation properties significantly improved

3. Currently and under specific circumstances:

notable performance degradations

4. There is a lot of future work

Enforcing Integrity and Software Fault Isolation in Microkernels with CHERI
Georg Lauterbach
Master Thesis‘ Defense // 27 September 2023

Slide 23

Backup Slides

Motivation and Technical Background

Goals, Concept and Implementation

Evaluation

Conclusion and Discussion

Summary

Enforcing Integrity and Software Fault Isolation in Microkernels with CHERI
Georg Lauterbach
Master Thesis‘ Defense // 27 September 2023

Slide 24

Detailed IPC Benchmark Results

Same-Core

72%

C
P

U
 C

y
cl

e
 C

o
u

n
t

No-Capability Capability CPU Cycle Count: lower is better

• No-Capability

• 2.4% (23) of cycles for capability-lookups

• CPI: 0.73

• Capability

• 17.8% (280) cycles for capability-lookup

• 2 re-derivations per lookup on average

• CPI: 1.04

Enforcing Integrity and Software Fault Isolation in Microkernels with CHERI
Georg Lauterbach
Master Thesis‘ Defense // 27 September 2023

Slide 25

Other Approaches

1. Mondrian supplements page tables by word-granular in-memory “protection tables”, which contain

permissions managed by a supervisor. Mondrian requires no user space ISA changes but instead relies

on a supervisor mode to maintain the protection tables, which, in turn, requires a domain switch for

each allocation and free event.

2. Hardbound is a hardware-assisted fat-pointer model that is rooted in software bounds-checking. But

Hardbound's pointers are forgeable.

3. Intel MPX provides hardware-assisted bounds checking similar to Hardbound, but with important

differences: bounds are atomically propagated, there is no compression, the tables are hierarchical, and

transactional memory is required.

4. The M-Machine is a 64bit tagged-memory capability system design using guarded pointers to

implement fine-grained memory protection for memory safety with almost zero ABI compatibility.

5. Singularity is an OS developed by Microsoft Research employing so-called Software Isolated Processes.

6. (K)ASan: address sanitizers are mostly debugging tool and probabilistic.

Enforcing Integrity and Software Fault Isolation in Microkernels with CHERI
Georg Lauterbach
Master Thesis‘ Defense // 27 September 2023

Slide 26

A More Complicated Example

#include <arch/cheri/generic.h>

typedef void (*fn_any_t)(void);

static void *THE_ALMIGHTY_CAP = …;

void * __attribute__((always_inline)) _cheri_unseal_sentry_cap(fn_any_t *const fn) {
 return cheri_unseal(fn, cheri_address_set(THE_ALMIGHTY_CAP, 0x1));
}

extern fn_any_t exception_vector_table_el1;

void exception_vector_init(void) {
 void *vector_table_el1_ptr = _cheri_unseal_sentry_cap(&exception_vector_table_el1);
 CHERI_REDERIVE(vector_table_el1_ptr, 0xffff00000000)
 write_to_reg__vbar_el1(vector_table_el1_ptr);
}

Enforcing Integrity and Software Fault Isolation in Microkernels with CHERI
Georg Lauterbach
Master Thesis‘ Defense // 27 September 2023

Slide 27

Scheduling Benchmark Results

CPU Cycle Count

No-Capability Capability CPU Cycle Count: lower () is better

Enforcing Integrity and Software Fault Isolation in Microkernels with CHERI
Georg Lauterbach
Master Thesis‘ Defense // 27 September 2023

Slide 28

Future Work

1. Improved capability fault handling

2. User space code in kernel space

3. Capability-aware user space

4. Logical separation of kernel subsystems

5. Extensive analysis of performance penalties

6. Comprehensive benchmarking

7. Comprehensive fault injections

	Headers
	Slide 1: Enforcing Integrity and Software Fault Isolation in Microkernels with CHERI

	Motivation
	Slide 2: Motivation and Technical Background
	Slide 3: Motivation and Technical Background
	Slide 4: Motivation and Technical Background
	Slide 5: Motivation and Technical Background
	Slide 6: Motivation and Technical Background
	Slide 7: Motivation and Technical Background
	Slide 8: Motivation and Technical Background

	Goals, Concept and Implementation
	Slide 9: Goals, Concept and Implementation
	Slide 10: Goals and Concept
	Slide 11: Re-Derivations
	Slide 12: Setting the Kernel Stack Pointer – A Comparison

	Evaluation
	Slide 13: Evaluation
	Slide 14: The Porting Effort
	Slide 15: New Fault Isolation Properties
	Slide 16: Performance Measurements
	Slide 17: IPC Benchmark Results
	Slide 18: Resource Management Benchmark Results

	Conclusion and Discussion
	Slide 19: Conclusion and Discussion
	Slide 20: Conclusion and Discussion

	Summary
	Slide 21: Summary
	Slide 22: Summary

	Backup Slides
	Slide 23: Backup Slides
	Slide 24: Detailed IPC Benchmark Results
	Slide 25: Other Approaches
	Slide 26: A More Complicated Example
	Slide 27: Scheduling Benchmark Results
	Slide 28: Future Work

