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Motivation

Many systems rely on timely processing of interrupts

Interrupt occurs

Power Failure Interrupt

time
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Power Loss

delayed

Can we provide safe guarantees on how long interrupts can be delayed?

⇒ Blocking time analysis on assembly level
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Interrupt Analysis



Kernel Disassembly

Operating systems support numerous architectures

One binary can be composed of multiple kinds

.init.text

.text

.exit.text

1# 16/32 Bit
20x1000000: <startup>:
3mov ax, bx
4...
5# 64 Bit
60x1001000: <kernel_main>:
7sub rsp, 64
8...
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Control Flow

Control Flow Graphs

Composed of basic blocks, with single entry- and exit-point
Edges indicate control flow deviations (e.g. (un-)conditional jumps)
Valid for each function

Call Graphs
Vertices are the binary’s functions, edges inferred by call targets
Depicts inter-function relationships

test rdi, rdi
je 0x8

... ...

ret

...

test rax, rax
jne 0x24

function f
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Interrupt Knowledge Constant

Constant interrupt knowledge is caused by {sti: on, cli: off, popf: ?}.

in bx, 8
test bx, bx

je 0x8

cli sti

...

ret

sti

test bx, bx
jne 0x24

function f

Unaffected by surrounding blocks
Occurs in small subset of functions

⇒ Propagate knowledge dynamically throughout the control flow graph
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Interrupt Knowledge Context

Requires knowledge present in a function’s entry block

Each block is dependent on its predecessors
Contradicting interrupt states lead to worst-case (unknown)
Fixed-point iteration until results are stable

sti sti

...

cli cli

...

sti cli

...

cli popf

...
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Determining Interrupt Latency

Interrupt Latency
Longest possible instruction count until interrupts are enabled again.

in bx, 8
test rbx, rbx

je 0x8

cli sti

mul rbx, 32

ret

sti

sub rbx, 8
mov rax, rbx

function f

0

1

3

4

DFS to find longest path
Unknown and disabled states
Weigh by instruction kind
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Pitfalls and Limitations



Indirect Branches

Not all control flow instructions target a static location

call rax/jmp rax depend on run-time values
Execution can continue nearly anywhere
Caused by jump tables, {interrupt, syscall} dispatchers, …

jmp rax

Function A Basic Block X ...Function B
? ? ? ?
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Injecting External Knowledge

Specific compiler options like -fno-jump-tables

Determine possible targets using source code level analysis
Interrupt service routines
Virtual function tables (C++)

1 dispatch:
2 mov rbx, rdi
3 mov rax, rbx
4 call rax

1 dispatch:
2 mov rbx, rdi
3 mov rax, rbx
4 call 0x21610

1dispatch:
2mov rbx, rdi
3mov rax, rbx
4call 0xABA80
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Inter-Function Analysis

What happens when interrupts are still disabled in the exit block?

⇒ Follow the call tree upwards
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Loops

Terminate early when encountering loops with disabled interrupts

Inherent limitation present in static approaches
Dataflow analysis could provide loop bound approximations

mov rcx, rdi
cli

add rbx, 8
cmp rbx, rcx

jne L1
retsti

function f
L1:
...

→ Repetitions limited by rdi (function parameter)
→ Caller with the highest value ”wins”
→ Only possible for trivial cases
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Evaluation



Analysis Environment

Compilers:

Version Flags

clang 17.0.6 {-Os, -O2}, fcf-protection=none
gcc 13.2.1 {-Os, -O2}, fcf-protection=none

Operating Systems:

Version Notable Options

Linux 6.5.7 tinyconfig, readable asm, ...
BSD 13.1 GENERIC*
StuBs - -
RuStuBs - -
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Error Kinds Linux

gcc os gcc o2 clang os clang o2
0
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132

Irreducibility
Deviated Exit
Dynamic Call
Dynamic Jump
Call Loop
Analyzable
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Intervals Linux

0 5 10 15 20 25 30 35 40
Basic Block Count
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Ended Interval Statistics

gcc os
gcc o2
clang o2
clang os
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Validation

Not every cli is made equal

Startup code
Scheduling

Various control flow paths per cli
→ Validate results using dynamic analysis
→ QEMU Plugin to count interrupts 8102d23e 810e5d77 810ee793 816cbfce

CLI addresses

0

5

10

15

20

25

In
st

ru
ct

io
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C
ou

nt

Static Count Dynamic Count
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Discussion



Discussion

Static analysis can provide reliable guarantees

High flexibility due to source-code independence
Many limitations still need to be to overcome

Support for additional architectures (ARM, RISC-V, …)
Incorporate more external knowledge during analysis
Verify applicability of existing WCET algorithms

Can we provide safe guarantees on how long interrupts can be delayed?

Questions?
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Appendix Control Flow Deviations

cmp rdx, rdx
je 0x100B

add rbx, 32

ret

function f

jmp 0x9000

mov rdi, rdx
call g

sub rax, 64

?

0x1000

0x1100
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Appendix Static Analysis

1 int measure(Sensor* s) {
2 int total = 0, limit;
3 if (s->kind == 0x0) {
4 limit = 16;
5 } else {
6 limit = 32;
7 }
8 for(int i = 0; i < limit; ++i) {
9 total += sense(s);
10 }
11 return total;
12 }

statically obtainable
run-time dependency
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