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Many systems rely on timely processing of interrupts

Power Failure Interrupt Power Loss

A
>

delayed

interrupts
A 4

i time
Interrupt occurs

Can we provide safe guarantees on how long interrupts can be delayed?

= Blocking time analysis on assembly level
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Kernel Disassembly

m Operating systems support numerous architectures
m One binary can be composed of multiple kinds

text

# 16/32 Bit .

0x1000000: <startup>: 2

mov ax, bx 3

e o o 4

# 64 Bit 5

— 0x1001000: <kernel_main>: 6

Y Y sub rsp, 64 7
.exit.text e o0 8
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Control Flow

m Control Flow Graphs

= Composed of basic blocks, with single entry- and exit-point
= Edges indicate control flow deviations (e.g. (un-)conditional jumps)

= Valid for each function
m Call Graphs

program p \\\

func: f
func: i

func: h
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Control Flow

m Control Flow Graphs

= Composed of basic blocks, with single entry- and exit-point
= Edges indicate control flow deviations (e.g. (un-)conditional jumps)
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program p \\\
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Control Flow

m Control Flow Graphs

= Composed of basic blocks, with single entry- and exit-point
= Edges indicate control flow deviations (e.g. (un-)conditional jumps)

= Valid for each function
m Call Graphs

= Vertices are the binary’s functions, edges inferred by call targets
= Depicts inter-function relationships

program p \\\

func: f
func: i

func: h
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Interrupt Knowledge Constant

Constant interrupt knowledge is caused by {sti: on, cli: off, popf: ?}.
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in bx, 8
test bx, bx
je 0x8

test bx, bx
jne 0x24
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Interrupt Knowledge Constant

Constant interrupt knowledge is caused by {sti: on, cli: off, popf: ?}.

in bx, 8
test bx, bx
je 0x8

m Unaffected by surrounding blocks
Test b, b m Occurs in small subset of functions

jne 0x24
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Interrupt Knowledge Constant

Constant interrupt knowledge is caused by {sti: on, cli: off, popf: ?}.

in bx, 8 \‘
test bx, bx H
je 0x8 3
| H
A4 .
cli sti 3
| . .
. m Unaffected by surrounding blocks
T . m Occurs in small subset of functions
jne 0x24 :
sti
\7—,
ret

= Propagate knowledge dynamically throughout the control flow graph
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Interrupt Knowledge Context

m Requires knowledge present in a function’s entry block
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Interrupt Knowledge Context

m Requires knowledge present in a function’s entry block

m Each block is dependent on its predecessors

m Contradicting interrupt states lead to worst-case (unknown)
m Fixed-point iteration until results are stable
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Determining Interrupt Latency

Interrupt Latency
Longest possible instruction count until interrupts are enabled again.
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Determining Interrupt Latency

Interrupt Latency
Longest possible instruction count until interrupts are enabled again.

in bx, 8

test rbx, rbx
je 0x8

1
3 sub rbx,
mov rax, rbx
4 sti
2
EEE
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Determining Interrupt Latency

Interrupt Latency
Longest possible instruction count until interrupts are enabled again.

in bx, 8
test rbx, rbx
je 0x8

m DFS to find longest path
m Unknown and disabled states

m Weigh by instruction kind
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Determining Interrupt Latency

Interrupt Latency
Longest possible instruction count until interrupts are enabled again.

in bx, 8
test rbx, rbx
je 0x8

m DFS to find longest path
m Unknown and disabled states
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Pitfalls and Limitations




Indirect Branches

m Not all control flow instructions target a static location
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Indirect Branches

Not all control flow instructions target a static location

call rax/jmp rax depend on run-time values

Execution can continue nearly anywhere
Caused by jump tables, {interrupt, syscall} dispatchers, ...

Functic;n A | | Basic Bl(.)ck X | | Fun.ction B | |
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Injecting External Knowledge

m Specific compiler options like -fno-jump-tables

m Determine possible targets using source code level analysis
= Interrupt service routines
= Virtual function tables (C++)

1dispatch:

. mov rbx, rdi
3 mov rax, rbx
.+ call rax
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Injecting External Knowledge

m Specific compiler options like -fno-jump-tables

m Determine possible targets using source code level analysis
= Interrupt service routines
= Virtual function tables (C++)

1dispatch:

= mov rbx, rdi
3 mov rax, rbx
.+ call rax

1dispatch: dispatch: 1
= mov rbx, rdi mov rbx, rdi -
3 mov rax, rbx mov rax, rbx s
. call 0x21610 call OxABA8O .
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Inter-Function Analysis

What happens when interrupts are still disabled in the exit block?
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What happens when interrupts are still disabled in the exit block?

= Follow the call tree upwards

func: setup func: load func: ...
Y
func: f
func: enable ps2 func: trace
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Inter-Function Analysis

What happens when interrupts are still disabled in the exit block?

= Follow the call tree upwards

func: setup func: load func: ...
1 1 )
func: f
func: enable ps2 func: trace
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m Terminate early when encountering loops with disabled interrupts
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m Terminate early when encountering loops with disabled interrupts
m Inherent limitation present in static approaches
m Dataflow analysis could provide loop bound approximations

function f + .
mov rcx, rdi T1: add rbx, 8
i : }—) cmp rbx, rcx Ssti Lyl T

cli
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m Terminate early when encountering loops with disabled interrupts
m Inherent limitation present in static approaches
m Dataflow analysis could provide loop bound approximations

function f + .
mov rcx, rdi T1: add rbx, 8
l', . }—’ cmp rbx, rcx sti > T
== — jne L1

— Repetitions limited by rdi (function parameter)
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m Terminate early when encountering loops with disabled interrupts
m Inherent limitation present in static approaches
m Dataflow analysis could provide loop bound approximations

function f + .
mov rcx, rdi T1: add rbx, 8
l', . }—’ cmp rbx, rcx sti > T
== — jne L1

— Repetitions limited by rdi (function parameter)
— Caller with the highest value "wins”
— Only possible for trivial cases
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Evaluation




Analysis Environment

Compilers:

Version Flags

clang 17.0.6 {-0s, -02}, fcf-protection=none
gcc 13.2.1  {-0s, -02}, fcf-protection=none
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Analysis Environment

Compilers:

Version Flags

clang 17.0.6 {-0s, -02}, fcf-protection=none
gcc 13.2.1  {-0s, -02}, fcf-protection=none

Operating Systems:

Version Notable Options

Linux 6.5.7 tinyconfig, readable asm, ...
BSD 13.1 GENERIC

StuBs - -

RuStuBs - -
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Error Kinds Linux

800
700 -
5 6001 el B Irreducibility
< 128 12 . :
3§ 500 - 337 I Dev1ate'd Exit
2 - 236 " B Dynamic Call
.2 4001 [ Dynamic Jump
g 176 @ Call Loop
53001 122 B Analyzable
214 117
200
197
100 i 188 230
o 43
gce 08 gcc 02 clang os clang 02
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Intervals

Interrupt Latency in O

Instruction Count

Ended Interval Statistics
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Validation

m Not every cli is made equal
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Validation

m Not every cli is made equal

= Startup code
= Scheduling

= %) )
o S St

=

Instruction Count

m Various control flow paths per cli

o

— Validate results using dynamic analysis
— QEMU Plugin to count interrupts

0l
8102d23e 810e5d77 810ee793 816¢bfce
CLI addresses

I Static Count [ Dynamic Count
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Discussion

m Static analysis can provide reliable guarantees
m High flexibility due to source-code independence
m Many limitations still need to be to overcome
= Support for additional architectures (ARM, RISC-V, ...)

= Incorporate more external knowledge during analysis
= Verify applicability of existing WCET algorithms

Can we provide safe guarantees on how long interrupts can be delayed?

Questions?
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Ap pendix Control Flow Deviations

0x1000

0x1100

/~ function f

cmp rdx,

rdx

Jje 0x100B

Y

add rbx,

4

32

jmp 0x9000
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mov rdi,
call g

rdx

v

sub rax,

64




Appendix Static Analysis

.int measure(Sensor* s) {
. 1int total = 0, limit;

s 1f (s->kind == 0x0) {

4 limit = 16;

st else {

6 limit = 32;

7} statically obtainable
s for(int i = 0; i < limit; ++1i) { run-time dependency
9 total += sense(s);

0}

u return total;

2}
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