Interrupt Latency in Operating-System Kernels

Challenges and Benefits of Static Analysis

March 14, 2024

Kevin Kollenda, Thomas Preisner, Dustin Nguyen, Phillip Raffeck

Friedrich-Alexander-Universitat Erlangen-Niirnberg

Friedrich-Alexander-Universitat
E Technische Fakultat
Chair in Distributed Systems /4

and Operating Systems

Many systems rely on timely processing of interrupts

Interrupt Latency in Operating-System Kernels

Many systems rely on timely processing of interrupts

Power Failure Interrupt Power Loss

A
>

delayed

interrupts
A 4

i time
Interrupt occurs

Interrupt Latency in O

Many systems rely on timely processing of interrupts

Power Failure Interrupt Power Loss

A
>

delayed

interrupts
A 4

i time
Interrupt occurs

Can we provide safe guarantees on how long interrupts can be delayed?

Interrupt Latency in Operating-System Kernels

Many systems rely on timely processing of interrupts

Power Failure Interrupt Power Loss

A
>

delayed

interrupts
A 4

i time
Interrupt occurs

Can we provide safe guarantees on how long interrupts can be delayed?

= Blocking time analysis on assembly level

Interrupt Latency in Operating-System Kernels

Table of Contents

1. Interrupt Analysis
2. Pitfalls and Limitations
3. Evaluation

4. Discussion

Interrupt Latency in Operating-System Kernels

Interrupt Analysis

Kernel Disassembly

m Operating systems support numerous architectures

Interrupt Latency in Operating-System Kernels

Kernel Disassembly

m Operating systems support numerous architectures
m One binary can be composed of multiple kinds

Interrupt Latency in Operating-System Kernels

Kernel Disassembly

m Operating systems support numerous architectures
m One binary can be composed of multiple kinds

text

16/32 Bit .

0x1000000: <startup>: 2

mov ax, bx 3

e o o 4

64 Bit 5

— 0x1001000: <kernel_main>: 6

Y Y sub rsp, 64 7
.exit.text e o0 8

Interrupt Latency in Operating-System Kernels

Control Flow

m Control Flow Graphs

Interrupt Latency in Operating-System Kernels

Control Flow

m Control Flow Graphs
= Composed of basic blocks, with single entry- and exit-point

Interrupt Latency in Operating-System Kernels

Control Flow

m Control Flow Graphs
= Composed of basic blocks, with single entry- and exit-point
= Edges indicate control flow deviations (e.g. (un-)conditional jumps)

Interrupt Latency in Operating-System Kernels

Control Flow

m Control Flow Graphs
= Composed of basic blocks, with single entry- and exit-point
= Edges indicate control flow deviations (e.g. (un-)conditional jumps)
= Valid for each function

Interrupt Latency in Operating-System Kernels

Control Flow

m Control Flow Graphs

= Composed of basic blocks, with single entry- and exit-point
= Edges indicate control flow deviations (e.g. (un-)conditional jumps)

= Valid for each function
m Call Graphs

program p \\\

func: f
func: i

func: h

Interrupt Latency in Operating-System Kernels

Control Flow

m Control Flow Graphs

= Composed of basic blocks, with single entry- and exit-point
= Edges indicate control flow deviations (e.g. (un-)conditional jumps)

= Valid for each function
m Call Graphs

= Vertices are the binary’s functions, edges inferred by call targets

program p \\\

func: f
func: i

func: h

Interrupt Latency in Operating-System Kernels

Control Flow

m Control Flow Graphs

= Composed of basic blocks, with single entry- and exit-point
= Edges indicate control flow deviations (e.g. (un-)conditional jumps)

= Valid for each function
m Call Graphs

= Vertices are the binary’s functions, edges inferred by call targets
= Depicts inter-function relationships

program p \\\

func: f
func: i

func: h

Interrupt Latency in Operating-System Kernels

Interrupt Knowledge Constant

Constant interrupt knowledge is caused by {sti: on, cli: off, popf: ?}.

Interrupt Latency in Operating-System Kernels

Interrupt Knowledge Constant

Constant interrupt knowledge is caused by {sti: on, cli: off, popf: ?}.

in bx, 8
test bx, bx
je 0x8

test bx, bx
jne 0x24

Interrupt Latency in Operating-System Kernels

Interrupt Knowledge Constant

Constant interrupt knowledge is caused by {sti: on, cli: off, popf: ?}.

in bx, 8
test bx, bx
je 0x8

m Unaffected by surrounding blocks

test bx, bx

jne 0x24

Interrupt Latency in Operating-System Kernels

Interrupt Knowledge Constant

Constant interrupt knowledge is caused by {sti: on, cli: off, popf: ?}.

in bx, 8
test bx, bx
je 0x8

m Unaffected by surrounding blocks
Test b, b m Occurs in small subset of functions

jne 0x24

Interrupt Latency in Operating-System Kernels

Interrupt Knowledge Constant

Constant interrupt knowledge is caused by {sti: on, cli: off, popf: ?}.

in bx, 8 \‘
test bx, bx H
je 0x8 3
| H
A4 .
cli sti 3
| . .
. m Unaffected by surrounding blocks
T . m Occurs in small subset of functions
jne 0x24 :
sti
\7—,
ret

= Propagate knowledge dynamically throughout the control flow graph

Interrupt Latency in Operating-System Kernels

Interrupt Knowledge Context

m Requires knowledge present in a function’s entry block

Interrupt Latency in Operating-System Kernels

Interrupt Knowledge Context

m Requires knowledge present in a function’s entry block
m Each block is dependent on its predecessors

Interrupt Latency in Operating-System Kernels

Interrupt Knowledge Context

m Requires knowledge present in a function’s entry block
m Each block is dependent on its predecessors
m Contradicting interrupt states lead to worst-case (unknown)

Interrupt Latency in Operating-System Kernels

Interrupt Knowledge Context

Requires knowledge present in a function’s entry block

Each block is dependent on its predecessors

Contradicting interrupt states lead to worst-case (unknown)

Fixed-point iteration until results are stable

Interrupt Latency in Operating-System Kernels

Interrupt Knowledge Context

m Requires knowledge present in a function’s entry block

m Each block is dependent on its predecessors

m Contradicting interrupt states lead to worst-case (unknown)
m Fixed-point iteration until results are stable

Interrupt Latency in Operating-System Kernels

Determining Interrupt Latency

Interrupt Latency
Longest possible instruction count until interrupts are enabled again.

Interrupt Latency in Operating-System Kernels

Determining Interrupt Latency

Interrupt Latency
Longest possible instruction count until interrupts are enabled again.

in bx, 8

test rbx, rbx
je 0x8

1
3 sub rbx,
mov rax, rbx
4 sti
2
EEE

Interrupt Latency in Operating-System Kernels

Determining Interrupt Latency

Interrupt Latency
Longest possible instruction count until interrupts are enabled again.

in bx, 8
test rbx, rbx
je 0x8

m DFS to find longest path

Interrupt Latency in Operating-System Kernels

Determining Interrupt Latency

Interrupt Latency
Longest possible instruction count until interrupts are enabled again.

in bx, 8
test rbx, rbx
je 0x8

m DFS to find longest path
m Unknown and disabled states

Interrupt Latency in Operating-System Kernels

Determining Interrupt Latency

Interrupt Latency
Longest possible instruction count until interrupts are enabled again.

in bx, 8
test rbx, rbx
je 0x8

m DFS to find longest path
m Unknown and disabled states

m Weigh by instruction kind

Interrupt Latency in Operating-System Kernels

Determining Interrupt Latency

Interrupt Latency
Longest possible instruction count until interrupts are enabled again.

in bx, 8
test rbx, rbx
je 0x8

m DFS to find longest path
m Unknown and disabled states

Interrupt Latency in Operating-System Kernels

Pitfalls and Limitations

Indirect Branches

m Not all control flow instructions target a static location

Interrupt Latency in Operating-System Kernels

Indirect Branches

m Not all control flow instructions target a static location
m call rax/jmp rax depend on run-time values

Interrupt Latency in Operating-System Kernels

Indirect Branches

m Not all control flow instructions target a static location
m call rax/jmp rax depend on run-time values
m Execution can continue nearly anywhere

Interrupt Latency in Operating-System Kernels

Indirect Branches

Not all control flow instructions target a static location

call rax/jmp rax depend on run-time values

Execution can continue nearly anywhere
Caused by jump tables, {interrupt, syscall} dispatchers, ...

Interrupt Latency in Operating-System Kernels

Indirect Branches

Not all control flow instructions target a static location

call rax/jmp rax depend on run-time values

Execution can continue nearly anywhere
Caused by jump tables, {interrupt, syscall} dispatchers, ...

Functic;n A | | Basic Bl(.)ck X | | Fun.ction B | |

Interrupt Latency in Operating-System Kernels

Injecting External Knowledge

m Specific compiler options like -fno-jump-tables

Interrupt Latency in Operating-System Kernels

Injecting External Knowledge

m Specific compiler options like -fno-jump-tables
m Determine possible targets using source code level analysis

Interrupt Latency in Operating-System Kernels

Injecting External Knowledge

m Specific compiler options like -fno-jump-tables
m Determine possible targets using source code level analysis
= Interrupt service routines

Interrupt Latency in Operating-System Kernels

Injecting External Knowledge

m Specific compiler options like -fno-jump-tables

m Determine possible targets using source code level analysis
= Interrupt service routines
= Virtual function tables (C++)

Interrupt Latency in Operating-System Kernels

Injecting External Knowledge

m Specific compiler options like -fno-jump-tables

m Determine possible targets using source code level analysis
= Interrupt service routines
= Virtual function tables (C++)

1dispatch:

. mov rbx, rdi
3 mov rax, rbx
.+ call rax

Interrupt Latency in Operating-System Kernels

Injecting External Knowledge

m Specific compiler options like -fno-jump-tables

m Determine possible targets using source code level analysis
= Interrupt service routines
= Virtual function tables (C++)

1dispatch:

= mov rbx, rdi
3 mov rax, rbx
.+ call rax

1dispatch: dispatch: 1
= mov rbx, rdi mov rbx, rdi -
3 mov rax, rbx mov rax, rbx s
. call 0x21610 call OxABA8O .

Interrupt Latency in Operating-System Kernels

Inter-Function Analysis

What happens when interrupts are still disabled in the exit block?

Interrupt Latency in Operating-System Kernels

Inter-Function Analysis

What happens when interrupts are still disabled in the exit block?

= Follow the call tree upwards

Interrupt Latency in Operating-System Kernels

Inter-Function Analysis

What happens when interrupts are still disabled in the exit block?

= Follow the call tree upwards

func: setup func: load func: ...
Y
func: f
func: enable ps2 func: trace

Interrupt Latency in Operating-System Kernels

Inter-Function Analysis

What happens when interrupts are still disabled in the exit block?

= Follow the call tree upwards

func: setup func: load func: ...
1 1)
func: f
func: enable ps2 func: trace

Interrupt Latency in Operating-System Kernels

m Terminate early when encountering loops with disabled interrupts

Interrupt Latency in O

m Terminate early when encountering loops with disabled interrupts
m Inherent limitation present in static approaches

Interrupt Latency in Operating-System Kernels

m Terminate early when encountering loops with disabled interrupts
m Inherent limitation present in static approaches
m Dataflow analysis could provide loop bound approximations

function f + .
mov rcx, rdi T1: add rbx, 8
i : }—) cmp rbx, rcx Ssti Lyl T

cli

Interrupt Latency in Operating-System Kernels

m Terminate early when encountering loops with disabled interrupts
m Inherent limitation present in static approaches
m Dataflow analysis could provide loop bound approximations

function f + .
mov rcx, rdi T1: add rbx, 8
l', . }—’ cmp rbx, rcx sti > T
== — jne L1

— Repetitions limited by rdi (function parameter)

Interrupt Latency in Operating-System Kernels

m Terminate early when encountering loops with disabled interrupts
m Inherent limitation present in static approaches
m Dataflow analysis could provide loop bound approximations

function f + .
mov rcx, rdi T1: add rbx, 8
l', . }—’ cmp rbx, rcx sti > T
== — jne L1

— Repetitions limited by rdi (function parameter)
— Caller with the highest value "wins”

Interrupt Latency in Operating-System Kernels

m Terminate early when encountering loops with disabled interrupts
m Inherent limitation present in static approaches
m Dataflow analysis could provide loop bound approximations

function f + .
mov rcx, rdi T1: add rbx, 8
l', . }—’ cmp rbx, rcx sti > T
== — jne L1

— Repetitions limited by rdi (function parameter)
— Caller with the highest value "wins”
— Only possible for trivial cases

Interrupt Latency in Operating-System Kernels

Evaluation

Analysis Environment

Compilers:

Version Flags

clang 17.0.6 {-0s, -02}, fcf-protection=none
gcc 13.2.1 {-0s, -02}, fcf-protection=none

Interrupt Latency in Operating-System Kernels

Analysis Environment

Compilers:

Version Flags

clang 17.0.6 {-0s, -02}, fcf-protection=none
gcc 13.2.1 {-0s, -02}, fcf-protection=none

Operating Systems:

Version Notable Options

Linux 6.5.7 tinyconfig, readable asm, ...
BSD 13.1 GENERIC

StuBs - -

RuStuBs - -

Interrupt Latency in Operating-System Kernels

Error Kinds Linux

800
700 -
5 6001 el B Irreducibility
< 128 12 . :
3§ 500 - 337 I Dev1ate'd Exit
2 - 236 " B Dynamic Call
.2 4001 [Dynamic Jump
g 176 @ Call Loop
53001 122 B Analyzable
214 117
200
197
100 i 188 230
o 43
gce 08 gcc 02 clang os clang 02

Interrupt Latency in Operating-System Kernels 13

Intervals

Interrupt Latency in O

Instruction Count

Ended Interval Statistics

100 +

80 1

60

40 4

20 1

@® gccos ®
% gcc o2
clang 02
1 3 *
Vv clang os -
® v ®
* [
*
~ * my
(]
’ '
5 10 15 20 25 30 35 40

Basic Block Count

Validation

m Not every cli is made equal

Interrupt Latency in O

Validation

m Not every cli is made equal
= Startup code

Interrupt Latency in Operating-System Kernels

Validation

m Not every cli is made equal

= Startup code
= Scheduling

Interrupt Latency in Operating-System Kernels

Validation

m Not every cli is made equal

= Startup code
= Scheduling

m Various control flow paths per cli

Interrupt Latency in Operating-System Kernels

Validation

m Not every cli is made equal

= Startup code
= Scheduling

m Various control flow paths per cli
— Validate results using dynamic analysis

Interrupt Latency in Operating-System Kernels

Validation

m Not every cli is made equal

= Startup code
= Scheduling

m Various control flow paths per cli

— Validate results using dynamic analysis
— QEMU Plugin to count interrupts

Interrupt Latency in Operating-System Kernels

Validation

m Not every cli is made equal

= Startup code
= Scheduling

= %))
o S St

=

Instruction Count

m Various control flow paths per cli

o

— Validate results using dynamic analysis
— QEMU Plugin to count interrupts

0l
8102d23e 810e5d77 810ee793 816¢bfce
CLI addresses

I Static Count [Dynamic Count

Interrupt Latency in Operating-System Kernels

Discussion

Discussion

m Static analysis can provide reliable guarantees

Interrupt Latency in O

Discussion

m Static analysis can provide reliable guarantees
m High flexibility due to source-code independence

Interrupt Latency in Operating-System Kernels

Discussion

m Static analysis can provide reliable guarantees
m High flexibility due to source-code independence
m Many limitations still need to be to overcome

Interrupt Latency in Operating-System Kernels

Discussion

m Static analysis can provide reliable guarantees
m High flexibility due to source-code independence
m Many limitations still need to be to overcome
= Support for additional architectures (ARM, RISC-V, ...)

Interrupt Latency in Operating-System Kernels

Discussion

m Static analysis can provide reliable guarantees
m High flexibility due to source-code independence
m Many limitations still need to be to overcome

= Support for additional architectures (ARM, RISC-V, ...)
= Incorporate more external knowledge during analysis

Interrupt Latency in Operating-System Kernels

Discussion

m Static analysis can provide reliable guarantees
m High flexibility due to source-code independence
m Many limitations still need to be to overcome

= Support for additional architectures (ARM, RISC-V, ...)
= Incorporate more external knowledge during analysis
= Verify applicability of existing WCET algorithms

Interrupt Latency in Operating-System Kernels

Discussion

m Static analysis can provide reliable guarantees
m High flexibility due to source-code independence
m Many limitations still need to be to overcome

= Support for additional architectures (ARM, RISC-V, ...)
= Incorporate more external knowledge during analysis
= Verify applicability of existing WCET algorithms

Can we provide safe guarantees on how long interrupts can be delayed?

Interrupt Latency in Operating-System Kernels

Discussion

m Static analysis can provide reliable guarantees
m High flexibility due to source-code independence
m Many limitations still need to be to overcome
= Support for additional architectures (ARM, RISC-V, ...)

= Incorporate more external knowledge during analysis
= Verify applicability of existing WCET algorithms

Can we provide safe guarantees on how long interrupts can be delayed?

Questions?

Interrupt Latency in Operating-System Kernels

Ap pendix Control Flow Deviations

0x1000

0x1100

/~ function f

cmp rdx,

rdx

Jje 0x100B

Y

add rbx,

4

32

jmp 0x9000

Interrupt Latency in Operating-System Kernels

4

mov rdi,
call g

rdx

v

sub rax,

64

Appendix Static Analysis

.int measure(Sensor* s) {
. 1int total = 0, limit;

s 1f (s->kind == 0x0) {

4 limit = 16;

st else {

6 limit = 32;

7} statically obtainable
s for(int i = 0; i < limit; ++1i) { run-time dependency
9 total += sense(s);

0}

u return total;

2}

Interrupt Latency in Operating-System Kernels

	Interrupt Analysis
	Pitfalls and Limitations
	Evaluation
	Discussion
	Appendix

