
Interrupt Latency in Operating-System Kernels
Challenges and Benefits of Static Analysis

March 14, 2024

Kevin Kollenda, Thomas Preisner, Dustin Nguyen, Phillip Raffeck

Friedrich-Alexander-Universität Erlangen-Nürnberg

Chair in Distributed Systems
and Operating Systems

Motivation

Many systems rely on timely processing of interrupts

Interrupt occurs

Power Failure Interrupt

time

in
te

rr
up

ts

Power Loss

delayed

Can we provide safe guarantees on how long interrupts can be delayed?

⇒ Blocking time analysis on assembly level

Interrupt Latency in Operating-System Kernels 1

Motivation

Many systems rely on timely processing of interrupts

Interrupt occurs

Power Failure Interrupt

time

in
te

rr
up

ts

Power Loss

delayed

Can we provide safe guarantees on how long interrupts can be delayed?

⇒ Blocking time analysis on assembly level

Interrupt Latency in Operating-System Kernels 1

Motivation

Many systems rely on timely processing of interrupts

Interrupt occurs

Power Failure Interrupt

time

in
te

rr
up

ts

Power Loss

delayed

Can we provide safe guarantees on how long interrupts can be delayed?

⇒ Blocking time analysis on assembly level

Interrupt Latency in Operating-System Kernels 1

Motivation

Many systems rely on timely processing of interrupts

Interrupt occurs

Power Failure Interrupt

time

in
te

rr
up

ts

Power Loss

delayed

Can we provide safe guarantees on how long interrupts can be delayed?

⇒ Blocking time analysis on assembly level
Interrupt Latency in Operating-System Kernels 1

Table of Contents

1. Interrupt Analysis

2. Pitfalls and Limitations

3. Evaluation

4. Discussion

Interrupt Latency in Operating-System Kernels 2

Interrupt Analysis

Kernel Disassembly

Operating systems support numerous architectures

One binary can be composed of multiple kinds

.init.text

.text

.exit.text

1# 16/32 Bit
20x1000000: <startup>:
3mov ax, bx
4...
5# 64 Bit
60x1001000: <kernel_main>:
7sub rsp, 64
8...

Interrupt Latency in Operating-System Kernels 3

Kernel Disassembly

Operating systems support numerous architectures
One binary can be composed of multiple kinds

.init.text

.text

.exit.text

1# 16/32 Bit
20x1000000: <startup>:
3mov ax, bx
4...
5# 64 Bit
60x1001000: <kernel_main>:
7sub rsp, 64
8...

Interrupt Latency in Operating-System Kernels 3

Kernel Disassembly

Operating systems support numerous architectures
One binary can be composed of multiple kinds

.init.text

.text

.exit.text

1# 16/32 Bit
20x1000000: <startup>:
3mov ax, bx
4...
5# 64 Bit
60x1001000: <kernel_main>:
7sub rsp, 64
8...

Interrupt Latency in Operating-System Kernels 3

Control Flow

Control Flow Graphs

Composed of basic blocks, with single entry- and exit-point
Edges indicate control flow deviations (e.g. (un-)conditional jumps)
Valid for each function

Call Graphs
Vertices are the binary’s functions, edges inferred by call targets
Depicts inter-function relationships

test rdi, rdi
je 0x8

... ...

ret

...

test rax, rax
jne 0x24

function f

Interrupt Latency in Operating-System Kernels 4

Control Flow

Control Flow Graphs
Composed of basic blocks, with single entry- and exit-point

Edges indicate control flow deviations (e.g. (un-)conditional jumps)
Valid for each function

Call Graphs
Vertices are the binary’s functions, edges inferred by call targets
Depicts inter-function relationships

test rdi, rdi
je 0x8

... ...

ret

...

test rax, rax
jne 0x24

function f

Interrupt Latency in Operating-System Kernels 4

Control Flow

Control Flow Graphs
Composed of basic blocks, with single entry- and exit-point
Edges indicate control flow deviations (e.g. (un-)conditional jumps)

Valid for each function
Call Graphs

Vertices are the binary’s functions, edges inferred by call targets
Depicts inter-function relationships

test rdi, rdi
je 0x8

... ...

ret

...

test rax, rax
jne 0x24

function f

Interrupt Latency in Operating-System Kernels 4

Control Flow

Control Flow Graphs
Composed of basic blocks, with single entry- and exit-point
Edges indicate control flow deviations (e.g. (un-)conditional jumps)
Valid for each function

Call Graphs
Vertices are the binary’s functions, edges inferred by call targets
Depicts inter-function relationships

test rdi, rdi
je 0x8

... ...

ret

...

test rax, rax
jne 0x24

function f

Interrupt Latency in Operating-System Kernels 4

Control Flow

Control Flow Graphs
Composed of basic blocks, with single entry- and exit-point
Edges indicate control flow deviations (e.g. (un-)conditional jumps)
Valid for each function

Call Graphs

Vertices are the binary’s functions, edges inferred by call targets
Depicts inter-function relationships

test rdi, rdi
je 0x8

... ...

ret

...

test rax, rax
jne 0x24

function f

func: f

func: g

func: h

func: i

func: j

func: k
program p

Interrupt Latency in Operating-System Kernels 4

Control Flow

Control Flow Graphs
Composed of basic blocks, with single entry- and exit-point
Edges indicate control flow deviations (e.g. (un-)conditional jumps)
Valid for each function

Call Graphs
Vertices are the binary’s functions, edges inferred by call targets

Depicts inter-function relationships

test rdi, rdi
je 0x8

... ...

ret

...

test rax, rax
jne 0x24

function f

func: f

func: g

func: h

func: i

func: j

func: k
program p

Interrupt Latency in Operating-System Kernels 4

Control Flow

Control Flow Graphs
Composed of basic blocks, with single entry- and exit-point
Edges indicate control flow deviations (e.g. (un-)conditional jumps)
Valid for each function

Call Graphs
Vertices are the binary’s functions, edges inferred by call targets
Depicts inter-function relationships

test rdi, rdi
je 0x8

... ...

ret

...

test rax, rax
jne 0x24

function f

func: f

func: g

func: h

func: i

func: j

func: k
program p

Interrupt Latency in Operating-System Kernels 4

Interrupt Knowledge Constant

Constant interrupt knowledge is caused by {sti: on, cli: off, popf: ?}.

in bx, 8
test bx, bx

je 0x8

cli sti

...

ret

sti

test bx, bx
jne 0x24

function f

Unaffected by surrounding blocks
Occurs in small subset of functions

⇒ Propagate knowledge dynamically throughout the control flow graph

Interrupt Latency in Operating-System Kernels 5

Interrupt Knowledge Constant

Constant interrupt knowledge is caused by {sti: on, cli: off, popf: ?}.

in bx, 8
test bx, bx

je 0x8

cli sti

...

ret

sti

test bx, bx
jne 0x24

function f

Unaffected by surrounding blocks
Occurs in small subset of functions

⇒ Propagate knowledge dynamically throughout the control flow graph

Interrupt Latency in Operating-System Kernels 5

Interrupt Knowledge Constant

Constant interrupt knowledge is caused by {sti: on, cli: off, popf: ?}.

in bx, 8
test bx, bx

je 0x8

cli sti

...

ret

sti

test bx, bx
jne 0x24

function f

Unaffected by surrounding blocks

Occurs in small subset of functions

⇒ Propagate knowledge dynamically throughout the control flow graph

Interrupt Latency in Operating-System Kernels 5

Interrupt Knowledge Constant

Constant interrupt knowledge is caused by {sti: on, cli: off, popf: ?}.

in bx, 8
test bx, bx

je 0x8

cli sti

...

ret

sti

test bx, bx
jne 0x24

function f

Unaffected by surrounding blocks
Occurs in small subset of functions

⇒ Propagate knowledge dynamically throughout the control flow graph

Interrupt Latency in Operating-System Kernels 5

Interrupt Knowledge Constant

Constant interrupt knowledge is caused by {sti: on, cli: off, popf: ?}.

in bx, 8
test bx, bx

je 0x8

cli sti

...

ret

sti

test bx, bx
jne 0x24

function f

Unaffected by surrounding blocks
Occurs in small subset of functions

⇒ Propagate knowledge dynamically throughout the control flow graph

Interrupt Latency in Operating-System Kernels 5

Interrupt Knowledge Context

Requires knowledge present in a function’s entry block

Each block is dependent on its predecessors
Contradicting interrupt states lead to worst-case (unknown)
Fixed-point iteration until results are stable

sti sti

...

cli cli

...

sti cli

...

cli popf

...

Interrupt Latency in Operating-System Kernels 6

Interrupt Knowledge Context

Requires knowledge present in a function’s entry block
Each block is dependent on its predecessors

Contradicting interrupt states lead to worst-case (unknown)
Fixed-point iteration until results are stable

sti sti

...

cli cli

...

sti cli

...

cli popf

...

Interrupt Latency in Operating-System Kernels 6

Interrupt Knowledge Context

Requires knowledge present in a function’s entry block
Each block is dependent on its predecessors
Contradicting interrupt states lead to worst-case (unknown)

Fixed-point iteration until results are stable

sti sti

...

cli cli

...

sti cli

...

cli popf

...

Interrupt Latency in Operating-System Kernels 6

Interrupt Knowledge Context

Requires knowledge present in a function’s entry block
Each block is dependent on its predecessors
Contradicting interrupt states lead to worst-case (unknown)
Fixed-point iteration until results are stable

sti sti

...

cli cli

...

sti cli

...

cli popf

...

Interrupt Latency in Operating-System Kernels 6

Interrupt Knowledge Context

Requires knowledge present in a function’s entry block
Each block is dependent on its predecessors
Contradicting interrupt states lead to worst-case (unknown)
Fixed-point iteration until results are stable

sti sti

...

cli cli

...

sti cli

...

cli popf

...

Interrupt Latency in Operating-System Kernels 6

Determining Interrupt Latency

Interrupt Latency
Longest possible instruction count until interrupts are enabled again.

in bx, 8
test rbx, rbx

je 0x8

cli sti

mul rbx, 32

ret

sti

sub rbx, 8
mov rax, rbx

function f

0

1

3

4

DFS to find longest path
Unknown and disabled states
Weigh by instruction kind

Interrupt Latency in Operating-System Kernels 7

Determining Interrupt Latency

Interrupt Latency
Longest possible instruction count until interrupts are enabled again.

in bx, 8
test rbx, rbx

je 0x8

cli sti

mul rbx, 32

ret

sti

sub rbx, 8
mov rax, rbx

function f

0

1

3

4

DFS to find longest path
Unknown and disabled states
Weigh by instruction kind

Interrupt Latency in Operating-System Kernels 7

Determining Interrupt Latency

Interrupt Latency
Longest possible instruction count until interrupts are enabled again.

in bx, 8
test rbx, rbx

je 0x8

cli sti

mul rbx, 32

ret

sti

sub rbx, 8
mov rax, rbx

function f

0

1

3

4

DFS to find longest path

Unknown and disabled states
Weigh by instruction kind

Interrupt Latency in Operating-System Kernels 7

Determining Interrupt Latency

Interrupt Latency
Longest possible instruction count until interrupts are enabled again.

in bx, 8
test rbx, rbx

je 0x8

cli sti

mul rbx, 32

ret

sti

sub rbx, 8
mov rax, rbx

function f

0

1

3

4

DFS to find longest path
Unknown and disabled states

Weigh by instruction kind

Interrupt Latency in Operating-System Kernels 7

Determining Interrupt Latency

Interrupt Latency
Longest possible instruction count until interrupts are enabled again.

in bx, 8
test rbx, rbx

je 0x8

cli sti

mul rbx, 32

ret

sti

sub rbx, 8
mov rax, rbx

function f

0

1

3

4

DFS to find longest path
Unknown and disabled states
Weigh by instruction kind

Interrupt Latency in Operating-System Kernels 7

Determining Interrupt Latency

Interrupt Latency
Longest possible instruction count until interrupts are enabled again.

in bx, 8
test rbx, rbx

je 0x8

cli sti

mul rbx, 32

ret

sti

sub rbx, 8
mov rax, rbx

function f

0

1

3

4

DFS to find longest path
Unknown and disabled states
Weigh by instruction kind

Interrupt Latency in Operating-System Kernels 7

Pitfalls and Limitations

Indirect Branches

Not all control flow instructions target a static location

call rax/jmp rax depend on run-time values
Execution can continue nearly anywhere
Caused by jump tables, {interrupt, syscall} dispatchers, …

jmp rax

Function A Basic Block X ...Function B
? ? ? ?

Interrupt Latency in Operating-System Kernels 8

Indirect Branches

Not all control flow instructions target a static location
call rax/jmp rax depend on run-time values

Execution can continue nearly anywhere
Caused by jump tables, {interrupt, syscall} dispatchers, …

jmp rax

Function A Basic Block X ...Function B
? ? ? ?

Interrupt Latency in Operating-System Kernels 8

Indirect Branches

Not all control flow instructions target a static location
call rax/jmp rax depend on run-time values
Execution can continue nearly anywhere

Caused by jump tables, {interrupt, syscall} dispatchers, …

jmp rax

Function A Basic Block X ...Function B
? ? ? ?

Interrupt Latency in Operating-System Kernels 8

Indirect Branches

Not all control flow instructions target a static location
call rax/jmp rax depend on run-time values
Execution can continue nearly anywhere
Caused by jump tables, {interrupt, syscall} dispatchers, …

jmp rax

Function A Basic Block X ...Function B
? ? ? ?

Interrupt Latency in Operating-System Kernels 8

Indirect Branches

Not all control flow instructions target a static location
call rax/jmp rax depend on run-time values
Execution can continue nearly anywhere
Caused by jump tables, {interrupt, syscall} dispatchers, …

jmp rax

Function A Basic Block X ...Function B
? ? ? ?

Interrupt Latency in Operating-System Kernels 8

Injecting External Knowledge

Specific compiler options like -fno-jump-tables

Determine possible targets using source code level analysis
Interrupt service routines
Virtual function tables (C++)

1 dispatch:
2 mov rbx, rdi
3 mov rax, rbx
4 call rax

1 dispatch:
2 mov rbx, rdi
3 mov rax, rbx
4 call 0x21610

1dispatch:
2mov rbx, rdi
3mov rax, rbx
4call 0xABA80

Interrupt Latency in Operating-System Kernels 9

Injecting External Knowledge

Specific compiler options like -fno-jump-tables
Determine possible targets using source code level analysis

Interrupt service routines
Virtual function tables (C++)

1 dispatch:
2 mov rbx, rdi
3 mov rax, rbx
4 call rax

1 dispatch:
2 mov rbx, rdi
3 mov rax, rbx
4 call 0x21610

1dispatch:
2mov rbx, rdi
3mov rax, rbx
4call 0xABA80

Interrupt Latency in Operating-System Kernels 9

Injecting External Knowledge

Specific compiler options like -fno-jump-tables
Determine possible targets using source code level analysis

Interrupt service routines

Virtual function tables (C++)
1 dispatch:
2 mov rbx, rdi
3 mov rax, rbx
4 call rax

1 dispatch:
2 mov rbx, rdi
3 mov rax, rbx
4 call 0x21610

1dispatch:
2mov rbx, rdi
3mov rax, rbx
4call 0xABA80

Interrupt Latency in Operating-System Kernels 9

Injecting External Knowledge

Specific compiler options like -fno-jump-tables
Determine possible targets using source code level analysis

Interrupt service routines
Virtual function tables (C++)

1 dispatch:
2 mov rbx, rdi
3 mov rax, rbx
4 call rax

1 dispatch:
2 mov rbx, rdi
3 mov rax, rbx
4 call 0x21610

1dispatch:
2mov rbx, rdi
3mov rax, rbx
4call 0xABA80

Interrupt Latency in Operating-System Kernels 9

Injecting External Knowledge

Specific compiler options like -fno-jump-tables
Determine possible targets using source code level analysis

Interrupt service routines
Virtual function tables (C++)

1 dispatch:
2 mov rbx, rdi
3 mov rax, rbx
4 call rax

1 dispatch:
2 mov rbx, rdi
3 mov rax, rbx
4 call 0x21610

1dispatch:
2mov rbx, rdi
3mov rax, rbx
4call 0xABA80

Interrupt Latency in Operating-System Kernels 9

Injecting External Knowledge

Specific compiler options like -fno-jump-tables
Determine possible targets using source code level analysis

Interrupt service routines
Virtual function tables (C++)

1 dispatch:
2 mov rbx, rdi
3 mov rax, rbx
4 call rax

1 dispatch:
2 mov rbx, rdi
3 mov rax, rbx
4 call 0x21610

1dispatch:
2mov rbx, rdi
3mov rax, rbx
4call 0xABA80

Interrupt Latency in Operating-System Kernels 9

Inter-Function Analysis

What happens when interrupts are still disabled in the exit block?

⇒ Follow the call tree upwards

Interrupt Latency in Operating-System Kernels 10

Inter-Function Analysis

What happens when interrupts are still disabled in the exit block?

⇒ Follow the call tree upwards

Interrupt Latency in Operating-System Kernels 10

Inter-Function Analysis

What happens when interrupts are still disabled in the exit block?

⇒ Follow the call tree upwards

func: f

func: enable_ps2 func: trace

func: setup func: ...func: load

Interrupt Latency in Operating-System Kernels 10

Inter-Function Analysis

What happens when interrupts are still disabled in the exit block?

⇒ Follow the call tree upwards

func: f

func: enable_ps2 func: trace

func: setup func: ...func: load

Interrupt Latency in Operating-System Kernels 10

Loops

Terminate early when encountering loops with disabled interrupts

Inherent limitation present in static approaches
Dataflow analysis could provide loop bound approximations

mov rcx, rdi
cli

add rbx, 8
cmp rbx, rcx

jne L1
retsti

function f
L1:
...

→ Repetitions limited by rdi (function parameter)
→ Caller with the highest value ”wins”
→ Only possible for trivial cases

Interrupt Latency in Operating-System Kernels 11

Loops

Terminate early when encountering loops with disabled interrupts
Inherent limitation present in static approaches

Dataflow analysis could provide loop bound approximations

mov rcx, rdi
cli

add rbx, 8
cmp rbx, rcx

jne L1
retsti

function f
L1:
...

→ Repetitions limited by rdi (function parameter)
→ Caller with the highest value ”wins”
→ Only possible for trivial cases

Interrupt Latency in Operating-System Kernels 11

Loops

Terminate early when encountering loops with disabled interrupts
Inherent limitation present in static approaches
Dataflow analysis could provide loop bound approximations

mov rcx, rdi
cli

add rbx, 8
cmp rbx, rcx

jne L1
retsti

function f
L1:
...

→ Repetitions limited by rdi (function parameter)
→ Caller with the highest value ”wins”
→ Only possible for trivial cases

Interrupt Latency in Operating-System Kernels 11

Loops

Terminate early when encountering loops with disabled interrupts
Inherent limitation present in static approaches
Dataflow analysis could provide loop bound approximations

mov rcx, rdi
cli

add rbx, 8
cmp rbx, rcx

jne L1
retsti

function f
L1:
...

→ Repetitions limited by rdi (function parameter)

→ Caller with the highest value ”wins”
→ Only possible for trivial cases

Interrupt Latency in Operating-System Kernels 11

Loops

Terminate early when encountering loops with disabled interrupts
Inherent limitation present in static approaches
Dataflow analysis could provide loop bound approximations

mov rcx, rdi
cli

add rbx, 8
cmp rbx, rcx

jne L1
retsti

function f
L1:
...

→ Repetitions limited by rdi (function parameter)
→ Caller with the highest value ”wins”

→ Only possible for trivial cases

Interrupt Latency in Operating-System Kernels 11

Loops

Terminate early when encountering loops with disabled interrupts
Inherent limitation present in static approaches
Dataflow analysis could provide loop bound approximations

mov rcx, rdi
cli

add rbx, 8
cmp rbx, rcx

jne L1
retsti

function f
L1:
...

→ Repetitions limited by rdi (function parameter)
→ Caller with the highest value ”wins”
→ Only possible for trivial cases

Interrupt Latency in Operating-System Kernels 11

Evaluation

Analysis Environment

Compilers:

Version Flags

clang 17.0.6 {-Os, -O2}, fcf-protection=none
gcc 13.2.1 {-Os, -O2}, fcf-protection=none

Operating Systems:

Version Notable Options

Linux 6.5.7 tinyconfig, readable asm, ...
BSD 13.1 GENERIC*
StuBs - -
RuStuBs - -

Interrupt Latency in Operating-System Kernels 12

Analysis Environment

Compilers:

Version Flags

clang 17.0.6 {-Os, -O2}, fcf-protection=none
gcc 13.2.1 {-Os, -O2}, fcf-protection=none

Operating Systems:

Version Notable Options

Linux 6.5.7 tinyconfig, readable asm, ...
BSD 13.1 GENERIC*
StuBs - -
RuStuBs - -

Interrupt Latency in Operating-System Kernels 12

Error Kinds Linux

gcc os gcc o2 clang os clang o2
0

100

200

300

400

500

600

700

800
#

fu
nc

ti
on

s
w

it
h

cl
i

43
144 188 230197

214 117
122

176

236
242

337

58

28
12

11

17

12

128

133

121

132

Irreducibility
Deviated Exit
Dynamic Call
Dynamic Jump
Call Loop
Analyzable

Interrupt Latency in Operating-System Kernels 13

Intervals Linux

0 5 10 15 20 25 30 35 40
Basic Block Count

0

20

40

60

80

100
In

st
ru

ct
io

n
C

ou
nt

Ended Interval Statistics

gcc os
gcc o2
clang o2
clang os

Interrupt Latency in Operating-System Kernels 14

Validation

Not every cli is made equal

Startup code
Scheduling

Various control flow paths per cli
→ Validate results using dynamic analysis
→ QEMU Plugin to count interrupts 8102d23e 810e5d77 810ee793 816cbfce

CLI addresses

0

5

10

15

20

25

In
st

ru
ct

io
n

C
ou

nt

Static Count Dynamic Count

Interrupt Latency in Operating-System Kernels 15

Validation

Not every cli is made equal
Startup code

Scheduling
Various control flow paths per cli

→ Validate results using dynamic analysis
→ QEMU Plugin to count interrupts 8102d23e 810e5d77 810ee793 816cbfce

CLI addresses

0

5

10

15

20

25

In
st

ru
ct

io
n

C
ou

nt

Static Count Dynamic Count

Interrupt Latency in Operating-System Kernels 15

Validation

Not every cli is made equal
Startup code
Scheduling

Various control flow paths per cli
→ Validate results using dynamic analysis
→ QEMU Plugin to count interrupts 8102d23e 810e5d77 810ee793 816cbfce

CLI addresses

0

5

10

15

20

25

In
st

ru
ct

io
n

C
ou

nt

Static Count Dynamic Count

Interrupt Latency in Operating-System Kernels 15

Validation

Not every cli is made equal
Startup code
Scheduling

Various control flow paths per cli

→ Validate results using dynamic analysis
→ QEMU Plugin to count interrupts 8102d23e 810e5d77 810ee793 816cbfce

CLI addresses

0

5

10

15

20

25

In
st

ru
ct

io
n

C
ou

nt

Static Count Dynamic Count

Interrupt Latency in Operating-System Kernels 15

Validation

Not every cli is made equal
Startup code
Scheduling

Various control flow paths per cli
→ Validate results using dynamic analysis

→ QEMU Plugin to count interrupts 8102d23e 810e5d77 810ee793 816cbfce
CLI addresses

0

5

10

15

20

25

In
st

ru
ct

io
n

C
ou

nt

Static Count Dynamic Count

Interrupt Latency in Operating-System Kernels 15

Validation

Not every cli is made equal
Startup code
Scheduling

Various control flow paths per cli
→ Validate results using dynamic analysis
→ QEMU Plugin to count interrupts

8102d23e 810e5d77 810ee793 816cbfce
CLI addresses

0

5

10

15

20

25

In
st

ru
ct

io
n

C
ou

nt

Static Count Dynamic Count

Interrupt Latency in Operating-System Kernels 15

Validation

Not every cli is made equal
Startup code
Scheduling

Various control flow paths per cli
→ Validate results using dynamic analysis
→ QEMU Plugin to count interrupts 8102d23e 810e5d77 810ee793 816cbfce

CLI addresses

0

5

10

15

20

25

In
st

ru
ct

io
n

C
ou

nt

Static Count Dynamic Count

Interrupt Latency in Operating-System Kernels 15

Discussion

Discussion

Static analysis can provide reliable guarantees

High flexibility due to source-code independence
Many limitations still need to be to overcome

Support for additional architectures (ARM, RISC-V, …)
Incorporate more external knowledge during analysis
Verify applicability of existing WCET algorithms

Can we provide safe guarantees on how long interrupts can be delayed?

Questions?

Interrupt Latency in Operating-System Kernels 16

Discussion

Static analysis can provide reliable guarantees
High flexibility due to source-code independence

Many limitations still need to be to overcome
Support for additional architectures (ARM, RISC-V, …)
Incorporate more external knowledge during analysis
Verify applicability of existing WCET algorithms

Can we provide safe guarantees on how long interrupts can be delayed?

Questions?

Interrupt Latency in Operating-System Kernels 16

Discussion

Static analysis can provide reliable guarantees
High flexibility due to source-code independence
Many limitations still need to be to overcome

Support for additional architectures (ARM, RISC-V, …)
Incorporate more external knowledge during analysis
Verify applicability of existing WCET algorithms

Can we provide safe guarantees on how long interrupts can be delayed?

Questions?

Interrupt Latency in Operating-System Kernels 16

Discussion

Static analysis can provide reliable guarantees
High flexibility due to source-code independence
Many limitations still need to be to overcome

Support for additional architectures (ARM, RISC-V, …)

Incorporate more external knowledge during analysis
Verify applicability of existing WCET algorithms

Can we provide safe guarantees on how long interrupts can be delayed?

Questions?

Interrupt Latency in Operating-System Kernels 16

Discussion

Static analysis can provide reliable guarantees
High flexibility due to source-code independence
Many limitations still need to be to overcome

Support for additional architectures (ARM, RISC-V, …)
Incorporate more external knowledge during analysis

Verify applicability of existing WCET algorithms

Can we provide safe guarantees on how long interrupts can be delayed?

Questions?

Interrupt Latency in Operating-System Kernels 16

Discussion

Static analysis can provide reliable guarantees
High flexibility due to source-code independence
Many limitations still need to be to overcome

Support for additional architectures (ARM, RISC-V, …)
Incorporate more external knowledge during analysis
Verify applicability of existing WCET algorithms

Can we provide safe guarantees on how long interrupts can be delayed?

Questions?

Interrupt Latency in Operating-System Kernels 16

Discussion

Static analysis can provide reliable guarantees
High flexibility due to source-code independence
Many limitations still need to be to overcome

Support for additional architectures (ARM, RISC-V, …)
Incorporate more external knowledge during analysis
Verify applicability of existing WCET algorithms

Can we provide safe guarantees on how long interrupts can be delayed?

Questions?

Interrupt Latency in Operating-System Kernels 16

Discussion

Static analysis can provide reliable guarantees
High flexibility due to source-code independence
Many limitations still need to be to overcome

Support for additional architectures (ARM, RISC-V, …)
Incorporate more external knowledge during analysis
Verify applicability of existing WCET algorithms

Can we provide safe guarantees on how long interrupts can be delayed?

Questions?

Interrupt Latency in Operating-System Kernels 16

Appendix Control Flow Deviations

cmp rdx, rdx
je 0x100B

add rbx, 32

ret

function f

jmp 0x9000

mov rdi, rdx
call g

sub rax, 64

?

0x1000

0x1100

Interrupt Latency in Operating-System Kernels

Appendix Static Analysis

1 int measure(Sensor* s) {
2 int total = 0, limit;
3 if (s->kind == 0x0) {
4 limit = 16;
5 } else {
6 limit = 32;
7 }
8 for(int i = 0; i < limit; ++i) {
9 total += sense(s);
10 }
11 return total;
12 }

statically obtainable
run-time dependency

Interrupt Latency in Operating-System Kernels

	Interrupt Analysis
	Pitfalls and Limitations
	Evaluation
	Discussion
	Appendix

