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Introduction
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Increasingly heterogeneous systems

GPUs, FPGAs, NICs, AI-Accelerators, NVMe SSDs
Efficient data transfers via Direct Memory Access (DMA)

Unrestricted DMA is inherently unsafe

Need for memory protection and isolation
 → IOMMU as MMU for external devices

Memory management/abstractions must account for external devices

Qlogic NIC [1]

Samsung NVMe SSD [2]



Introduction

IOMMU-Assisted Memory Management 2albes@sra.uni-hannover.de

Increasingly heterogeneous systems

GPUs, FPGAs, NICs, AI-Accelerators, NVMe SSDs
Efficient data transfers via Direct Memory Access (DMA)

Unrestricted DMA is inherently unsafe

Need for memory protection and isolation
 → IOMMU as MMU for external devices

Memory management/abstractions must account for external devices

How to allow for efficient data transfers?

Qlogic NIC [1]

Samsung NVMe SSD [2]



Sharing Data With Devices
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Data needs to be copied

   → Only feasible for small transfers

Device AS Process AS Device AS Process AS

Isolation: Bounce Buffers Speed: Zero Copy

Device is not isolated

Idea: Map shared buffer alternatingly 
→ Large management overhead 



Sharing Data With Devices

IOMMU-Assisted Memory Management 3albes@sra.uni-hannover.de

Data needs to be copied

   → Only feasible for small transfers

Device AS Process AS Device AS Process AS

Can we have both: Isolation and speed?

Isolation: Bounce Buffers Speed: Zero Copy

Device is not isolated

Idea: Map shared buffer alternatingly 
→ Large management overhead 



Morsels
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A page table subtree that acts as a self-contained, sharable memory object [3]

Lifetime detached from processes
Shared efficiently between processes by mounting P1 P2

Morsel



Morsels

IOMMU-Assisted Memory Management 4albes@sra.uni-hannover.de

A page table subtree that acts as a self-contained, sharable memory object [3]

Lifetime detached from processes
Shared efficiently between processes by mounting P1 P2

Morsel



Morsels

IOMMU-Assisted Memory Management 4albes@sra.uni-hannover.de

A page table subtree that acts as a self-contained, sharable memory object [3]

Lifetime detached from processes
Shared efficiently between processes by mounting P1 P2

Morsel



Morsels

IOMMU-Assisted Memory Management 4albes@sra.uni-hannover.de

A page table subtree that acts as a self-contained, sharable memory object [3]

Lifetime detached from processes
Shared efficiently between processes by mounting P1 P2

Morsel



Morsels

IOMMU-Assisted Memory Management 4albes@sra.uni-hannover.de

A page table subtree that acts as a self-contained, sharable memory object [3]

Lifetime detached from processes
Shared efficiently between processes by mounting

A Morsel, shared between processes

P1 P2

Morsel
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A page table subtree that acts as a self-contained, sharable memory object [3]

Lifetime detached from processes
Shared efficiently between processes by mounting

Lazily populated through page fault mechanism

Working implementation for processes Linux

A Morsel, shared between processes

P1 P2

Morsel
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A page table subtree that acts as a self-contained, sharable memory object [3]

Lifetime detached from processes
Shared efficiently between processes by mounting

Lazily populated through page fault mechanism

Working implementation for processes Linux

A Morsel, shared between processes

P1 P2

Morsel

Extend Morsels to DMA-capable devices
On AMD64 (for now)



   
   

   

  
 
 
 

 
 
 

 
 
 

   

   

   

   

   

   

AMD IOMMU (AMD-V)
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AMD’s IOMMU specification
Similar to an AMD64 MMU
Not compatible with Intel’s IOMMU

IO Page Tables for each domain

Multiple IOTLBs

No (efficient) page fault handling
IOMMU in a heterogeneous system



Extending Morsels to the IOMMU
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Different states of a Morsel
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Extending Morsels to the IOMMU
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New use cases:
1. Device-Process (static)
2. Device-Device
3. Device-Process (dynamic)

Different states of a Morsel



        
      

     

      

       
      

Extending Morsels to the IOMMU
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New use cases:
1. Device-Process (static)
2. Device-Device
3. Device-Process (dynamic)

Requirements:
1. Morsels are visible to devices
2. Pinning

Different states of a Morsel



Extending Morsels – Sharing Page Tables
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Sharing tables between MMU and IOMMU is possible (for AMD)
Compatible formats
(IO)TLBs must be synchronized manually (when unmapping)

Minor changes required

Comparison between PTEs of an AMD64 MMU (top) and an AMD 
IOMMU (bottom)

  

           

              

    

   

 
  

  

   



  

           

              

    

 

     

  

 
  

  

   
 
 
 

Extending Morsels – Sharing Page Tables
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Sharing tables between MMU and IOMMU is possible (for AMD)
Compatible formats
(IO)TLBs must be synchronized manually (when unmapping)

Minor changes required

Possible conflicts

Bits ignored by the MMU may be used by SW
Linux uses 4 of these

Comparison between PTEs of an AMD64 MMU (top) and an AMD 
IOMMU (bottom)



IOMMU driver

Kernel-only
API defines operations on domains

Extended driver API to allow sharing of page tables

Implemented for AMD-IOMMU

Implementation for Linux 6.1
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IOMMU subsystem in Linux 6.1

      

      

   

      

    

      



IOMMU driver

Kernel-only
API defines operations on domains

Extended driver API to allow sharing of page tables

Implemented for AMD-IOMMU

Virtual Function I/O (VFIO) 

Current IOMMU user space API
Container manages lifetime of its mappings

Extended VFIO to handle Morsels

Benefit from existing lifetime management
      

      

     

   

      

     

         

    

      

Implementation for Linux 6.1
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IOMMU subsystem in Linux 6.1



Evaluation
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Measurements taken on recent desktop system

Mapping

Unmapping

Prototypical NVMe driver

CPU RAM NVMe SSD

AMD Ryzen 7 PRO 5750G
8 Cores / 16 Threads

@ 3.8 GHz

ADATA DDR4
32 GB

@ 3200 MHz

Samsung 970 EVO Plus
1 TB

3.5 GB/s seq. read



Evaluation – Mapping
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Allocation and mapping



Evaluation – Mapping
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Morsels compared to VFIO Buffers
VFIO: Runtime proportional to buffer size (~75% pinning, 25% table management)
Morsel: Orders of magnitude faster for large sizes due to constant runtime

Allocation and mapping Mapping only



Evaluation – Unmapping
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Morsels compared to VFIO Buffers
VFIO: Runtime proportional to buffer size (due to unpinning)
Morsel: Constant runtime. IOTLB invalidation accounts for ~90%



Evaluation – NVMe Driver
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User space NVMe driver
Driver process has exclusive SSD access → Isolation
Client request data
Driver reads data into Morsel and sends back reference

Benchmark: Client-side data rate
Morsel vs. VFIO and Posix-SHM
Workload: Clients calculate checksum
Measurements for one and two clients

Communication between driver and clients

      

      

      

      

      

      



Evaluation – NVMe Driver 1 Client
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With data transfer

Morsel: ~3 GB/s max
Does not reach SSD max, since packets are not prefetched

VFIO: ~2.3 GB/s max
Overhead from memory management and additional 
mmap()



Evaluation – NVMe Driver 1 Client
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With data transfer

Morsel: ~3 GB/s max
Does not reach SSD max, since packets are not prefetched

VFIO: ~2.3 GB/s max
Overhead from memory management and additional 
mmap()

Without data transfer

Morsel: ~23 GB/s
>16 MiB bottlenecked by checksum (memory bound)
Smaller packets profit from L3 cache (up to 55 GB/s)

VFIO: ~7 GB/s max



Evaluation – NVMe Driver 2 Clients
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With data transfer

Morsel: At SSD max

VFIO: ~3 GB/s
Does not reach SSD limit due to lock contention around 
VFIO container



Evaluation – NVMe Driver 2 Clients

IOMMU-Assisted Memory Management 14albes@sra.uni-hannover.de

With data transfer

Morsel: At SSD max

VFIO: ~3 GB/s
Does not reach SSD limit due to lock contention around 
VFIO container

Without data transfer

Morsel: Speedup x1.6-2.0
>16 MiB bottlenecked by checksum (memory bound)
Smaller packets profit from L3 cache (up to 95 GB/s)

VFIO: <10 GB/s
Scales poorly



Summary
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Modern memory management must account for external devices
Tradeoff: Speed vs. Isolation

Extended Morsels to the IOMMU
Efficient memory sharing with devices
(Modified) page table subtrees are directly shared between MMU and IOMMU
Implementation for Linux 6.1

Evaluated performance characteristics
(Un)mapping on IOMMU in constant time 

 → High throughput while enforcing isolation (~23 GB/s in NVMe bench)
More flexible than VFIO buffers: Don’t need to be mapped on the MMU-side first



Summary
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Modern memory management must account for external devices
Tradeoff: Speed vs. Isolation

Extended Morsels to the IOMMU
Efficient memory sharing with devices
(Modified) page table subtrees are directly shared between MMU and IOMMU
Implementation for Linux 6.1

Evaluated performance characteristics
(Un)mapping on IOMMU in constant time 

 → High throughput while enforcing isolation (~23 GB/s in NVMe bench)
More flexible than VFIO buffers: Don’t need to be mapped on the MMU-side first

Future work
Support for Intel IOMMUs
Evaluating ARM SMMUv3 support
Driver for an accelerator (FPGA?) → Morsel-Pipeline



Backup Slides
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AMD64 Long Mode Paging

IOMMU-Assisted Memory Management 17albes@sra.uni-hannover.de

4KiB page (frames)
Optional Huge Pages of 2MiB und 1GiB

48/57 Bit virtual → 52 Bit physical
4 or 5 level paging

Access rights at each level (r/w/x)
Restrictions are propagated downwards

Missing entries/access rights result in a 
page fault

Translation happens on Memory 
Management Unit (MMU)

Previous results will be cached inside 
Transaction Lookaside Buffer (TLB)

      

     

       

    

       

    

       

    

       

  

       

      

   

  

 

  

 

      

    

   

 

  

  

  

  

  

  

  

       

                         

              

          

        

  

     

    

 

 
  

 

Simplified page table entry

5 level address translation



AMD IOMMU (AMD-V) – Address translation
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6-Level-Paging → 64bit address space

Level Bits encode level of the next table
Skipping levels
Huge pages by terminating early (lvl=0)

Separate r/w rights → write-only
Restrictions are propagated downwards

Format compatible with MMU

             

              

            

        

   

     

    

 

  

      

         

       

        

       

        

   

  

 

  

  

 

  

  

     

          

     

Simplified page table entry

Address translation (example)



Extending Morsels – Alternative Implementations
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Exploiting the guest translation
Sharing morsel tables as guest tables
Guest tables use MMU format for both Intel and AMD
Features often not available
Address translation is more costly

Separate page tables
One set of page tables per (IO)MMU
Supports incompatible table formats
May exploit special hardware capabilities
Added overhead in page fault handler
Adds extra state to Morsel

            
     

      

     

  

     

   

  

         
     

     
         

     

Extra indirections when using guest translation



Evaluation – NVMe Driver Kernel Times (Data Transfer)
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Evaluation – NVMe Driver Kernel Times
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Sources
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