
IOMMU-Assisted Memory Management
Sharing Virtual-Memory Objects with PCIe Devices in the Linux Kernel

Kenny Albes

Spring Meeting FGBS

14.03.2024

Introduction

IOMMU-Assisted Memory Management 2albes@sra.uni-hannover.de

Increasingly heterogeneous systems

GPUs, FPGAs, NICs, AI-Accelerators, NVMe SSDs
Efficient data transfers via Direct Memory Access (DMA)

Unrestricted DMA is inherently unsafe

Need for memory protection and isolation
 → IOMMU as MMU for external devices

Memory management/abstractions must account for external devices

Qlogic NIC [1]

Samsung NVMe SSD [2]

Introduction

IOMMU-Assisted Memory Management 2albes@sra.uni-hannover.de

Increasingly heterogeneous systems

GPUs, FPGAs, NICs, AI-Accelerators, NVMe SSDs
Efficient data transfers via Direct Memory Access (DMA)

Unrestricted DMA is inherently unsafe

Need for memory protection and isolation
 → IOMMU as MMU for external devices

Memory management/abstractions must account for external devices

How to allow for efficient data transfers?

Qlogic NIC [1]

Samsung NVMe SSD [2]

Sharing Data With Devices

IOMMU-Assisted Memory Management 3albes@sra.uni-hannover.de

Data needs to be copied

 → Only feasible for small transfers

Device AS Process AS Device AS Process AS

Isolation: Bounce Buffers Speed: Zero Copy

Device is not isolated

Idea: Map shared buffer alternatingly
→ Large management overhead

Sharing Data With Devices

IOMMU-Assisted Memory Management 3albes@sra.uni-hannover.de

Data needs to be copied

 → Only feasible for small transfers

Device AS Process AS Device AS Process AS

Can we have both: Isolation and speed?

Isolation: Bounce Buffers Speed: Zero Copy

Device is not isolated

Idea: Map shared buffer alternatingly
→ Large management overhead

Morsels

IOMMU-Assisted Memory Management 4albes@sra.uni-hannover.de

A page table subtree that acts as a self-contained, sharable memory object [3]

Lifetime detached from processes
Shared efficiently between processes by mounting P1 P2

Morsel

Morsels

IOMMU-Assisted Memory Management 4albes@sra.uni-hannover.de

A page table subtree that acts as a self-contained, sharable memory object [3]

Lifetime detached from processes
Shared efficiently between processes by mounting P1 P2

Morsel

Morsels

IOMMU-Assisted Memory Management 4albes@sra.uni-hannover.de

A page table subtree that acts as a self-contained, sharable memory object [3]

Lifetime detached from processes
Shared efficiently between processes by mounting P1 P2

Morsel

Morsels

IOMMU-Assisted Memory Management 4albes@sra.uni-hannover.de

A page table subtree that acts as a self-contained, sharable memory object [3]

Lifetime detached from processes
Shared efficiently between processes by mounting P1 P2

Morsel

Morsels

IOMMU-Assisted Memory Management 4albes@sra.uni-hannover.de

A page table subtree that acts as a self-contained, sharable memory object [3]

Lifetime detached from processes
Shared efficiently between processes by mounting

A Morsel, shared between processes

P1 P2

Morsel

Morsels

IOMMU-Assisted Memory Management 4albes@sra.uni-hannover.de

A page table subtree that acts as a self-contained, sharable memory object [3]

Lifetime detached from processes
Shared efficiently between processes by mounting

Lazily populated through page fault mechanism

Working implementation for processes Linux

A Morsel, shared between processes

P1 P2

Morsel

Morsels

IOMMU-Assisted Memory Management 4albes@sra.uni-hannover.de

A page table subtree that acts as a self-contained, sharable memory object [3]

Lifetime detached from processes
Shared efficiently between processes by mounting

Lazily populated through page fault mechanism

Working implementation for processes Linux

A Morsel, shared between processes

P1 P2

Morsel

Extend Morsels to DMA-capable devices
On AMD64 (for now)

AMD IOMMU (AMD-V)

IOMMU-Assisted Memory Management 5albes@sra.uni-hannover.de

AMD’s IOMMU specification
Similar to an AMD64 MMU
Not compatible with Intel’s IOMMU

IO Page Tables for each domain

Multiple IOTLBs

No (efficient) page fault handling
IOMMU in a heterogeneous system

Extending Morsels to the IOMMU

IOMMU-Assisted Memory Management 6albes@sra.uni-hannover.de

Different states of a Morsel

Extending Morsels to the IOMMU

IOMMU-Assisted Memory Management 6albes@sra.uni-hannover.de

Different states of a Morsel

Extending Morsels to the IOMMU

IOMMU-Assisted Memory Management 6albes@sra.uni-hannover.de

New use cases:
1. Device-Process (static)
2. Device-Device
3. Device-Process (dynamic)

Different states of a Morsel

Extending Morsels to the IOMMU

IOMMU-Assisted Memory Management 6albes@sra.uni-hannover.de

New use cases:
1. Device-Process (static)
2. Device-Device
3. Device-Process (dynamic)

Requirements:
1. Morsels are visible to devices
2. Pinning

Different states of a Morsel

Extending Morsels – Sharing Page Tables

IOMMU-Assisted Memory Management 7albes@sra.uni-hannover.de

Sharing tables between MMU and IOMMU is possible (for AMD)
Compatible formats
(IO)TLBs must be synchronized manually (when unmapping)

Minor changes required

Comparison between PTEs of an AMD64 MMU (top) and an AMD
IOMMU (bottom)

Extending Morsels – Sharing Page Tables

IOMMU-Assisted Memory Management 7albes@sra.uni-hannover.de

Sharing tables between MMU and IOMMU is possible (for AMD)
Compatible formats
(IO)TLBs must be synchronized manually (when unmapping)

Minor changes required

Possible conflicts

Bits ignored by the MMU may be used by SW
Linux uses 4 of these

Comparison between PTEs of an AMD64 MMU (top) and an AMD
IOMMU (bottom)

IOMMU driver

Kernel-only
API defines operations on domains

Extended driver API to allow sharing of page tables

Implemented for AMD-IOMMU

Implementation for Linux 6.1

IOMMU-Assisted Memory Management 8albes@sra.uni-hannover.de

IOMMU subsystem in Linux 6.1

IOMMU driver

Kernel-only
API defines operations on domains

Extended driver API to allow sharing of page tables

Implemented for AMD-IOMMU

Virtual Function I/O (VFIO)

Current IOMMU user space API
Container manages lifetime of its mappings

Extended VFIO to handle Morsels

Benefit from existing lifetime management

Implementation for Linux 6.1

IOMMU-Assisted Memory Management 8albes@sra.uni-hannover.de

IOMMU subsystem in Linux 6.1

Evaluation

IOMMU-Assisted Memory Management 9albes@sra.uni-hannover.de

Measurements taken on recent desktop system

Mapping

Unmapping

Prototypical NVMe driver

CPU RAM NVMe SSD

AMD Ryzen 7 PRO 5750G
8 Cores / 16 Threads

@ 3.8 GHz

ADATA DDR4
32 GB

@ 3200 MHz

Samsung 970 EVO Plus
1 TB

3.5 GB/s seq. read

Evaluation – Mapping

IOMMU-Assisted Memory Management 10albes@sra.uni-hannover.de

Allocation and mapping

Evaluation – Mapping

IOMMU-Assisted Memory Management 10albes@sra.uni-hannover.de

Morsels compared to VFIO Buffers
VFIO: Runtime proportional to buffer size (~75% pinning, 25% table management)
Morsel: Orders of magnitude faster for large sizes due to constant runtime

Allocation and mapping Mapping only

Evaluation – Unmapping

IOMMU-Assisted Memory Management 11albes@sra.uni-hannover.de

Morsels compared to VFIO Buffers
VFIO: Runtime proportional to buffer size (due to unpinning)
Morsel: Constant runtime. IOTLB invalidation accounts for ~90%

Evaluation – NVMe Driver

IOMMU-Assisted Memory Management 12albes@sra.uni-hannover.de

User space NVMe driver
Driver process has exclusive SSD access → Isolation
Client request data
Driver reads data into Morsel and sends back reference

Benchmark: Client-side data rate
Morsel vs. VFIO and Posix-SHM
Workload: Clients calculate checksum
Measurements for one and two clients

Communication between driver and clients

Evaluation – NVMe Driver 1 Client

IOMMU-Assisted Memory Management 13albes@sra.uni-hannover.de

With data transfer

Morsel: ~3 GB/s max
Does not reach SSD max, since packets are not prefetched

VFIO: ~2.3 GB/s max
Overhead from memory management and additional
mmap()

Evaluation – NVMe Driver 1 Client

IOMMU-Assisted Memory Management 13albes@sra.uni-hannover.de

With data transfer

Morsel: ~3 GB/s max
Does not reach SSD max, since packets are not prefetched

VFIO: ~2.3 GB/s max
Overhead from memory management and additional
mmap()

Without data transfer

Morsel: ~23 GB/s
>16 MiB bottlenecked by checksum (memory bound)
Smaller packets profit from L3 cache (up to 55 GB/s)

VFIO: ~7 GB/s max

Evaluation – NVMe Driver 2 Clients

IOMMU-Assisted Memory Management 14albes@sra.uni-hannover.de

With data transfer

Morsel: At SSD max

VFIO: ~3 GB/s
Does not reach SSD limit due to lock contention around
VFIO container

Evaluation – NVMe Driver 2 Clients

IOMMU-Assisted Memory Management 14albes@sra.uni-hannover.de

With data transfer

Morsel: At SSD max

VFIO: ~3 GB/s
Does not reach SSD limit due to lock contention around
VFIO container

Without data transfer

Morsel: Speedup x1.6-2.0
>16 MiB bottlenecked by checksum (memory bound)
Smaller packets profit from L3 cache (up to 95 GB/s)

VFIO: <10 GB/s
Scales poorly

Summary

IOMMU-Assisted Memory Management 15albes@sra.uni-hannover.de

Modern memory management must account for external devices
Tradeoff: Speed vs. Isolation

Extended Morsels to the IOMMU
Efficient memory sharing with devices
(Modified) page table subtrees are directly shared between MMU and IOMMU
Implementation for Linux 6.1

Evaluated performance characteristics
(Un)mapping on IOMMU in constant time

 → High throughput while enforcing isolation (~23 GB/s in NVMe bench)
More flexible than VFIO buffers: Don’t need to be mapped on the MMU-side first

Summary

IOMMU-Assisted Memory Management 15albes@sra.uni-hannover.de

Modern memory management must account for external devices
Tradeoff: Speed vs. Isolation

Extended Morsels to the IOMMU
Efficient memory sharing with devices
(Modified) page table subtrees are directly shared between MMU and IOMMU
Implementation for Linux 6.1

Evaluated performance characteristics
(Un)mapping on IOMMU in constant time

 → High throughput while enforcing isolation (~23 GB/s in NVMe bench)
More flexible than VFIO buffers: Don’t need to be mapped on the MMU-side first

Future work
Support for Intel IOMMUs
Evaluating ARM SMMUv3 support
Driver for an accelerator (FPGA?) → Morsel-Pipeline

Backup Slides

IOMMU-Assisted Memory Management 16albes@sra.uni-hannover.de

AMD64 Long Mode Paging

IOMMU-Assisted Memory Management 17albes@sra.uni-hannover.de

4KiB page (frames)
Optional Huge Pages of 2MiB und 1GiB

48/57 Bit virtual → 52 Bit physical
4 or 5 level paging

Access rights at each level (r/w/x)
Restrictions are propagated downwards

Missing entries/access rights result in a
page fault

Translation happens on Memory
Management Unit (MMU)

Previous results will be cached inside
Transaction Lookaside Buffer (TLB)

Simplified page table entry

5 level address translation

AMD IOMMU (AMD-V) – Address translation

IOMMU-Assisted Memory Management 18albes@sra.uni-hannover.de

6-Level-Paging → 64bit address space

Level Bits encode level of the next table
Skipping levels
Huge pages by terminating early (lvl=0)

Separate r/w rights → write-only
Restrictions are propagated downwards

Format compatible with MMU

Simplified page table entry

Address translation (example)

Extending Morsels – Alternative Implementations

IOMMU-Assisted Memory Management 19albes@sra.uni-hannover.de

Exploiting the guest translation
Sharing morsel tables as guest tables
Guest tables use MMU format for both Intel and AMD
Features often not available
Address translation is more costly

Separate page tables
One set of page tables per (IO)MMU
Supports incompatible table formats
May exploit special hardware capabilities
Added overhead in page fault handler
Adds extra state to Morsel

Extra indirections when using guest translation

Evaluation – NVMe Driver Kernel Times (Data Transfer)

IOMMU-Assisted Memory Management 20albes@sra.uni-hannover.de

Evaluation – NVMe Driver Kernel Times

IOMMU-Assisted Memory Management 21albes@sra.uni-hannover.de

Sources

IOMMU-Assisted Memory Management 22albes@sra.uni-hannover.de

[1] Author: D-Kuru/Wikimedia Commons, Licence: CC-BY-SA-4.0

[2] Author: Dmitry Nosachev/Wikimedia Commons, Licence: CC-BY-SA-4.0

[3] Alexander Halbuer et. al. „Morsels: Explicit Virtual Memory Objects“. In: Proceedings of the 1st Workshop on
Disruptive Memory Systems. DIMES ’23. New York, NY, USA: Association for Computing Machinery, 2023, P. 52–59.
ISBN: 9798400703003. DOI: 10.1145/3609308.3625267. URL: https://doi.org/10.1145/3609308.3625267.

https://commons.wikimedia.org/wiki/User:D-Kuru
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://commons.wikimedia.org/wiki/User:Nosachevd
https://creativecommons.org/licenses/by-sa/4.0/deed.en

	Slide 1: IOMMU-Assisted Memory Management Sharing Virtual-Memory Objects with PCIe Devices in the Linux Kernel
	Slide 2: Introduction
	Slide 3: Introduction
	Slide 4: Sharing Data With Devices
	Slide 5: Sharing Data With Devices
	Slide 6: Morsels
	Slide 7: Morsels
	Slide 8: Morsels
	Slide 9: Morsels
	Slide 10: Morsels
	Slide 11: Morsels
	Slide 12: Morsels
	Slide 13: AMD IOMMU (AMD-V)
	Slide 14: Extending Morsels to the IOMMU
	Slide 15: Extending Morsels to the IOMMU
	Slide 16: Extending Morsels to the IOMMU
	Slide 17: Extending Morsels to the IOMMU
	Slide 18: Extending Morsels – Sharing Page Tables
	Slide 19: Extending Morsels – Sharing Page Tables
	Slide 20: Implementation for Linux 6.1
	Slide 21: Implementation for Linux 6.1
	Slide 22: Evaluation
	Slide 23: Evaluation – Mapping
	Slide 24: Evaluation – Mapping
	Slide 25: Evaluation – Unmapping
	Slide 26: Evaluation – NVMe Driver
	Slide 27: Evaluation – NVMe Driver 1 Client
	Slide 28: Evaluation – NVMe Driver 1 Client
	Slide 29: Evaluation – NVMe Driver 2 Clients
	Slide 30: Evaluation – NVMe Driver 2 Clients
	Slide 31: Summary
	Slide 32: Summary
	Slide 33: Backup Slides
	Slide 34: AMD64 Long Mode Paging
	Slide 35: AMD IOMMU (AMD-V) – Address translation
	Slide 36: Extending Morsels – Alternative Implementations
	Slide 37: Evaluation – NVMe Driver Kernel Times (Data Transfer)
	Slide 38: Evaluation – NVMe Driver Kernel Times
	Slide 39: Sources

