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What is Managarm?

Managarm: microkernel-based general-purpose OS with focus on
asynchronous I/O.

I Open-source project, mostly written in modern C++.

I Started in 2014.

I Many active contributors.
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What is Managarm?

I Fully asynchronous = (almost) all system calls are
asynchronous (same for drivers/servers, . . .).

I Reasonably good source-level compatiblity to Linux via user
space emulation.

SotA L4 style kernels: focus on low latency synchronous IPC

Advantage of asynchronicity: can handle higher bandwidth of
concurrent requests and uses fewer resources than synchronous
approaches
(e.g., fewer threads, less RAM).
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Agenda

I System Architecture

I Inter-Process Communication (IPC)
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System Architecture
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Managarm: block diagram

Kernel
IPC MM Threads Scheduling

Clock ACPI/DTB Device enumeration . . .

Privileged mode

User space

POSIX subsystem
Processes FDs Pipes

VFS epoll /proc . . .

Driver
IRQ handling Device I/O

. . .

Application
libc.so ld.so . . .
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Kernel ↔ user space interaction

In contrast to synchronous syscalls: async syscalls do not complete
when control flow returns to user space.

Instead: lock-free ring buffer is used to notify user space
whenever an async syscall completes.

Use C++20 coroutines to write ergonomic asynchronous code:
co_await some_async_operation()

I Reduces effort to write async code to level that is similar to
synchronous code.

I Other async/await mechanisms could be used as well (e.g., in
Rust, Python, . . .).
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Notification ring buffer

element element element element

chunk

User mode
(= consumer)
read pointer

Kernel
(= producer)
write pointer

I Similar to io uring in Linux, . . .

I Retrieving notification requires zero syscalls on the fast path.
Syscall is only required if thread needs to block when no notifications are

available.

I User space uses a pointer-sized value to match completion
notifications to pending syscalls.
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Asynchronous system calls

Almost all syscalls are async in Managarm.

I Examples: IPC, mapping/unmapping memory,
waiting for an IRQ, . . .

Exception: system calls that explicitly synchronize threads;
these are mostly futex operations.

I Required to implement mutexes, condition variables etc. in
user space.

I Also required to block a thread when there is no work to do.
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Inter-Process Communication (IPC)
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IPC: overview

I IPC is only dispatched when both sender/receiver are ready.

I IPC operations (e.g., send/receive) are queued.

I Message contents (= bytes) are not queued.

Advantage: can handle efficiently arbitrary number of concurrent
requests from a single thread.

Disadvantage: queuing of IPC operations requires memory
allocations and bookkeeping within the kernel.
But: in-kernel representation of IPC operations is fixed-size and small.

 Many cases achieve competitive performance with simpler
synchronous IPC (e.g., in Linux)
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IPC streams

Managarm uses “streams” as IPC primitive.

I Two endpoints per stream.

Threads post “actions” (= IPC operations) to each endpoint of
the stream.

I Examples: sending/receiving bytes, transfering capabilities.

I Actions on both ends are matched against each other and
dispatched: first action on first endpoint is matched to first action on

second endpoint, . . .

I Actions on both ends of the stream must be compatible:

send/receiveX, send/send×.

A single IPC syscall can submit multiple actions to a stream.

13 Alexander van der Grinten, The Managarm Project

Managarm: A Fully Asynchronous Operating System



IPC streams

Managarm uses “streams” as IPC primitive.

I Two endpoints per stream.

Threads post “actions” (= IPC operations) to each endpoint of
the stream.

I Examples: sending/receiving bytes, transfering capabilities.

I Actions on both ends are matched against each other and
dispatched: first action on first endpoint is matched to first action on

second endpoint, . . .

I Actions on both ends of the stream must be compatible:

send/receiveX, send/send×.

A single IPC syscall can submit multiple actions to a stream.

13 Alexander van der Grinten, The Managarm Project

Managarm: A Fully Asynchronous Operating System



IPC streams

Managarm uses “streams” as IPC primitive.

I Two endpoints per stream.

Threads post “actions” (= IPC operations) to each endpoint of
the stream.

I Examples: sending/receiving bytes, transfering capabilities.

I Actions on both ends are matched against each other and
dispatched: first action on first endpoint is matched to first action on

second endpoint, . . .

I Actions on both ends of the stream must be compatible:

send/receiveX, send/send×.

A single IPC syscall can submit multiple actions to a stream.

13 Alexander van der Grinten, The Managarm Project

Managarm: A Fully Asynchronous Operating System



IPC streams

Managarm uses “streams” as IPC primitive.

I Two endpoints per stream.

Threads post “actions” (= IPC operations) to each endpoint of
the stream.

I Examples: sending/receiving bytes, transfering capabilities.

I Actions on both ends are matched against each other and
dispatched: first action on first endpoint is matched to first action on

second endpoint, . . .

I Actions on both ends of the stream must be compatible:

send/receiveX, send/send×.

A single IPC syscall can submit multiple actions to a stream.

13 Alexander van der Grinten, The Managarm Project

Managarm: A Fully Asynchronous Operating System



IPC streams

Managarm uses “streams” as IPC primitive.

I Two endpoints per stream.

Threads post “actions” (= IPC operations) to each endpoint of
the stream.

I Examples: sending/receiving bytes, transfering capabilities.

I Actions on both ends are matched against each other and
dispatched: first action on first endpoint is matched to first action on

second endpoint, . . .

I Actions on both ends of the stream must be compatible:

send/receiveX, send/send×.

A single IPC syscall can submit multiple actions to a stream.

13 Alexander van der Grinten, The Managarm Project

Managarm: A Fully Asynchronous Operating System



Data transfer

Basic actions to send/receive bytes: SendFromBuffer /
RecvToBuffer (size must be known in advance).

Other send/receive actions to avoid copying in certain situations:

I RecvInline: receive data to the notification ring buffer
(as part of completion notification; bounded size).

I SendFromBufferSg: scatter-gather.

I . . .

All send* actions are compatible with all recv* actions.

Other actions allow transfering capabilities or have specialized
purposes (e.g., proving the identity of the thread that operates on the first

endpoint to the second endpoint).
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Request/response logic

It is often desirable to multiplex multiple concurrent
requests/responses over a single stream.

 Allows multiple clients to talk to same server.

Managarm uses “Offer”/“Accept” actions for this purpose.

I Offer/Accept pair creates a new “ancillary” stream
(Ancillary stream is usually short-lived and discarded after a single

request/response).

I Subsequent actions can be directed to the new stream
(without the need to invoke an additional syscall).
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Example: client/server IPC

1st endpoint,
client

2nd endpoint,
server

Ancillary stream

Offer

Accept

SendFromBuffer

RecvInline

RecvToBuffer

SendFromBuffer

1. Server posts Accept → RecvInline (to receive a request).
2. Client posts Offer → SendFromBuffer → RecvToBuffer

(to send a request and receive a response).
3. Server posts SendFromBuffer (to send the response).
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Acknowledgements
Check out the paper for more details:
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