
Managarm: A Fully Asynchronous Operating
System

Alexander van der Grinten
Kacper S lomiński

Geert Custers

The Managarm Project

FG-BS Frühjahrstreffen, March 14 - 15, 2024



What is Managarm?

Managarm: microkernel-based general-purpose OS with focus on
asynchronous I/O.

I Open-source project, mostly written in modern C++.

I Started in 2014.

I Many active contributors.

2 Alexander van der Grinten, The Managarm Project

Managarm: A Fully Asynchronous Operating System



What is Managarm?

Managarm: microkernel-based general-purpose OS with focus on
asynchronous I/O.

I Open-source project, mostly written in modern C++.

I Started in 2014.

I Many active contributors.

2 Alexander van der Grinten, The Managarm Project

Managarm: A Fully Asynchronous Operating System



What is Managarm?

3 Alexander van der Grinten, The Managarm Project

Managarm: A Fully Asynchronous Operating System



What is Managarm?

3 Alexander van der Grinten, The Managarm Project

Managarm: A Fully Asynchronous Operating System



What is Managarm?

I Fully asynchronous = (almost) all system calls are
asynchronous (same for drivers/servers, . . .).

I Reasonably good source-level compatiblity to Linux via user
space emulation.

SotA L4 style kernels: focus on low latency synchronous IPC

Advantage of asynchronicity: can handle higher bandwidth of
concurrent requests and uses fewer resources than synchronous
approaches
(e.g., fewer threads, less RAM).

4 Alexander van der Grinten, The Managarm Project

Managarm: A Fully Asynchronous Operating System



What is Managarm?

I Fully asynchronous = (almost) all system calls are
asynchronous (same for drivers/servers, . . .).

I Reasonably good source-level compatiblity to Linux via user
space emulation.

SotA L4 style kernels: focus on low latency synchronous IPC

Advantage of asynchronicity: can handle higher bandwidth of
concurrent requests and uses fewer resources than synchronous
approaches
(e.g., fewer threads, less RAM).

4 Alexander van der Grinten, The Managarm Project

Managarm: A Fully Asynchronous Operating System



What is Managarm?

I Fully asynchronous = (almost) all system calls are
asynchronous (same for drivers/servers, . . .).

I Reasonably good source-level compatiblity to Linux via user
space emulation.

SotA L4 style kernels: focus on low latency synchronous IPC

Advantage of asynchronicity: can handle higher bandwidth of
concurrent requests and uses fewer resources than synchronous
approaches
(e.g., fewer threads, less RAM).

4 Alexander van der Grinten, The Managarm Project

Managarm: A Fully Asynchronous Operating System



What is Managarm?

I Fully asynchronous = (almost) all system calls are
asynchronous (same for drivers/servers, . . .).

I Reasonably good source-level compatiblity to Linux via user
space emulation.

SotA L4 style kernels: focus on low latency synchronous IPC

Advantage of asynchronicity: can handle higher bandwidth of
concurrent requests and uses fewer resources than synchronous
approaches
(e.g., fewer threads, less RAM).

4 Alexander van der Grinten, The Managarm Project

Managarm: A Fully Asynchronous Operating System



Agenda

I System Architecture

I Inter-Process Communication (IPC)

5 Alexander van der Grinten, The Managarm Project

Managarm: A Fully Asynchronous Operating System



System Architecture

6 Alexander van der Grinten, The Managarm Project

Managarm: A Fully Asynchronous Operating System



Managarm: block diagram

Kernel
IPC MM Threads Scheduling

Clock ACPI/DTB Device enumeration . . .

Privileged mode

User space

POSIX subsystem
Processes FDs Pipes

VFS epoll /proc . . .

Driver
IRQ handling Device I/O

. . .

Application
libc.so ld.so . . .

7 Alexander van der Grinten, The Managarm Project

Managarm: A Fully Asynchronous Operating System



Managarm: block diagram

Kernel
IPC MM Threads Scheduling

Clock ACPI/DTB Device enumeration . . .

Privileged mode

User space

POSIX subsystem
Processes FDs Pipes

VFS epoll /proc . . .

Driver
IRQ handling Device I/O

. . .

Application
libc.so ld.so . . .

7 Alexander van der Grinten, The Managarm Project

Managarm: A Fully Asynchronous Operating System



Managarm: block diagram

Kernel
IPC MM Threads Scheduling

Clock ACPI/DTB Device enumeration . . .

Privileged mode

User space

POSIX subsystem
Processes FDs Pipes

VFS epoll /proc . . .

Driver
IRQ handling Device I/O

. . .

Application
libc.so ld.so . . .

7 Alexander van der Grinten, The Managarm Project

Managarm: A Fully Asynchronous Operating System



Managarm: block diagram

Kernel
IPC MM Threads Scheduling

Clock ACPI/DTB Device enumeration . . .

Privileged mode

User space

POSIX subsystem
Processes FDs Pipes

VFS epoll /proc . . .

Driver
IRQ handling Device I/O

. . .

Application
libc.so ld.so . . .

7 Alexander van der Grinten, The Managarm Project

Managarm: A Fully Asynchronous Operating System



Kernel ↔ user space interaction

In contrast to synchronous syscalls: async syscalls do not complete
when control flow returns to user space.

Instead: lock-free ring buffer is used to notify user space
whenever an async syscall completes.

Use C++20 coroutines to write ergonomic asynchronous code:
co_await some_async_operation()

I Reduces effort to write async code to level that is similar to
synchronous code.

I Other async/await mechanisms could be used as well (e.g., in
Rust, Python, . . .).

8 Alexander van der Grinten, The Managarm Project

Managarm: A Fully Asynchronous Operating System



Kernel ↔ user space interaction

In contrast to synchronous syscalls: async syscalls do not complete
when control flow returns to user space.

Instead: lock-free ring buffer is used to notify user space
whenever an async syscall completes.

Use C++20 coroutines to write ergonomic asynchronous code:
co_await some_async_operation()

I Reduces effort to write async code to level that is similar to
synchronous code.

I Other async/await mechanisms could be used as well (e.g., in
Rust, Python, . . .).

8 Alexander van der Grinten, The Managarm Project

Managarm: A Fully Asynchronous Operating System



Kernel ↔ user space interaction

In contrast to synchronous syscalls: async syscalls do not complete
when control flow returns to user space.

Instead: lock-free ring buffer is used to notify user space
whenever an async syscall completes.

Use C++20 coroutines to write ergonomic asynchronous code:
co_await some_async_operation()

I Reduces effort to write async code to level that is similar to
synchronous code.

I Other async/await mechanisms could be used as well (e.g., in
Rust, Python, . . .).

8 Alexander van der Grinten, The Managarm Project

Managarm: A Fully Asynchronous Operating System



Kernel ↔ user space interaction

In contrast to synchronous syscalls: async syscalls do not complete
when control flow returns to user space.

Instead: lock-free ring buffer is used to notify user space
whenever an async syscall completes.

Use C++20 coroutines to write ergonomic asynchronous code:
co_await some_async_operation()

I Reduces effort to write async code to level that is similar to
synchronous code.

I Other async/await mechanisms could be used as well (e.g., in
Rust, Python, . . .).

8 Alexander van der Grinten, The Managarm Project

Managarm: A Fully Asynchronous Operating System



Kernel ↔ user space interaction

In contrast to synchronous syscalls: async syscalls do not complete
when control flow returns to user space.

Instead: lock-free ring buffer is used to notify user space
whenever an async syscall completes.

Use C++20 coroutines to write ergonomic asynchronous code:
co_await some_async_operation()

I Reduces effort to write async code to level that is similar to
synchronous code.

I Other async/await mechanisms could be used as well (e.g., in
Rust, Python, . . .).

8 Alexander van der Grinten, The Managarm Project

Managarm: A Fully Asynchronous Operating System



Notification ring buffer

element element element element

chunk

User mode
(= consumer)
read pointer

Kernel
(= producer)
write pointer

I Similar to io uring in Linux, . . .

I Retrieving notification requires zero syscalls on the fast path.
Syscall is only required if thread needs to block when no notifications are

available.

I User space uses a pointer-sized value to match completion
notifications to pending syscalls.

9 Alexander van der Grinten, The Managarm Project

Managarm: A Fully Asynchronous Operating System



Notification ring buffer

element element element element

chunk

User mode
(= consumer)
read pointer

Kernel
(= producer)
write pointer

I Similar to io uring in Linux, . . .

I Retrieving notification requires zero syscalls on the fast path.
Syscall is only required if thread needs to block when no notifications are

available.

I User space uses a pointer-sized value to match completion
notifications to pending syscalls.

9 Alexander van der Grinten, The Managarm Project

Managarm: A Fully Asynchronous Operating System



Notification ring buffer

element element element element

chunk

User mode
(= consumer)
read pointer

Kernel
(= producer)
write pointer

I Similar to io uring in Linux, . . .

I Retrieving notification requires zero syscalls on the fast path.

Syscall is only required if thread needs to block when no notifications are

available.

I User space uses a pointer-sized value to match completion
notifications to pending syscalls.

9 Alexander van der Grinten, The Managarm Project

Managarm: A Fully Asynchronous Operating System



Notification ring buffer

element element element element

chunk

User mode
(= consumer)
read pointer

Kernel
(= producer)
write pointer

I Similar to io uring in Linux, . . .

I Retrieving notification requires zero syscalls on the fast path.
Syscall is only required if thread needs to block when no notifications are

available.

I User space uses a pointer-sized value to match completion
notifications to pending syscalls.

9 Alexander van der Grinten, The Managarm Project

Managarm: A Fully Asynchronous Operating System



Notification ring buffer

element element element element

chunk

User mode
(= consumer)
read pointer

Kernel
(= producer)
write pointer

I Similar to io uring in Linux, . . .

I Retrieving notification requires zero syscalls on the fast path.
Syscall is only required if thread needs to block when no notifications are

available.

I User space uses a pointer-sized value to match completion
notifications to pending syscalls.

9 Alexander van der Grinten, The Managarm Project

Managarm: A Fully Asynchronous Operating System



Asynchronous system calls

Almost all syscalls are async in Managarm.

I Examples: IPC, mapping/unmapping memory,
waiting for an IRQ, . . .

Exception: system calls that explicitly synchronize threads;
these are mostly futex operations.

I Required to implement mutexes, condition variables etc. in
user space.

I Also required to block a thread when there is no work to do.

10 Alexander van der Grinten, The Managarm Project

Managarm: A Fully Asynchronous Operating System



Asynchronous system calls

Almost all syscalls are async in Managarm.

I Examples: IPC, mapping/unmapping memory,
waiting for an IRQ, . . .

Exception: system calls that explicitly synchronize threads;
these are mostly futex operations.

I Required to implement mutexes, condition variables etc. in
user space.

I Also required to block a thread when there is no work to do.

10 Alexander van der Grinten, The Managarm Project

Managarm: A Fully Asynchronous Operating System



Asynchronous system calls

Almost all syscalls are async in Managarm.

I Examples: IPC, mapping/unmapping memory,
waiting for an IRQ, . . .

Exception: system calls that explicitly synchronize threads;
these are mostly futex operations.

I Required to implement mutexes, condition variables etc. in
user space.

I Also required to block a thread when there is no work to do.

10 Alexander van der Grinten, The Managarm Project

Managarm: A Fully Asynchronous Operating System



Asynchronous system calls

Almost all syscalls are async in Managarm.

I Examples: IPC, mapping/unmapping memory,
waiting for an IRQ, . . .

Exception: system calls that explicitly synchronize threads;
these are mostly futex operations.

I Required to implement mutexes, condition variables etc. in
user space.

I Also required to block a thread when there is no work to do.

10 Alexander van der Grinten, The Managarm Project

Managarm: A Fully Asynchronous Operating System



Inter-Process Communication (IPC)

11 Alexander van der Grinten, The Managarm Project

Managarm: A Fully Asynchronous Operating System



IPC: overview

I IPC is only dispatched when both sender/receiver are ready.

I IPC operations (e.g., send/receive) are queued.

I Message contents (= bytes) are not queued.

Advantage: can handle efficiently arbitrary number of concurrent
requests from a single thread.

Disadvantage: queuing of IPC operations requires memory
allocations and bookkeeping within the kernel.
But: in-kernel representation of IPC operations is fixed-size and small.

 Many cases achieve competitive performance with simpler
synchronous IPC (e.g., in Linux)

12 Alexander van der Grinten, The Managarm Project

Managarm: A Fully Asynchronous Operating System



IPC: overview

I IPC is only dispatched when both sender/receiver are ready.

I IPC operations (e.g., send/receive) are queued.

I Message contents (= bytes) are not queued.

Advantage: can handle efficiently arbitrary number of concurrent
requests from a single thread.

Disadvantage: queuing of IPC operations requires memory
allocations and bookkeeping within the kernel.
But: in-kernel representation of IPC operations is fixed-size and small.

 Many cases achieve competitive performance with simpler
synchronous IPC (e.g., in Linux)

12 Alexander van der Grinten, The Managarm Project

Managarm: A Fully Asynchronous Operating System



IPC: overview

I IPC is only dispatched when both sender/receiver are ready.

I IPC operations (e.g., send/receive) are queued.

I Message contents (= bytes) are not queued.

Advantage: can handle efficiently arbitrary number of concurrent
requests from a single thread.

Disadvantage: queuing of IPC operations requires memory
allocations and bookkeeping within the kernel.
But: in-kernel representation of IPC operations is fixed-size and small.

 Many cases achieve competitive performance with simpler
synchronous IPC (e.g., in Linux)

12 Alexander van der Grinten, The Managarm Project

Managarm: A Fully Asynchronous Operating System



IPC: overview

I IPC is only dispatched when both sender/receiver are ready.

I IPC operations (e.g., send/receive) are queued.

I Message contents (= bytes) are not queued.

Advantage: can handle efficiently arbitrary number of concurrent
requests from a single thread.

Disadvantage: queuing of IPC operations requires memory
allocations and bookkeeping within the kernel.
But: in-kernel representation of IPC operations is fixed-size and small.

 Many cases achieve competitive performance with simpler
synchronous IPC (e.g., in Linux)

12 Alexander van der Grinten, The Managarm Project

Managarm: A Fully Asynchronous Operating System



IPC: overview

I IPC is only dispatched when both sender/receiver are ready.

I IPC operations (e.g., send/receive) are queued.

I Message contents (= bytes) are not queued.

Advantage: can handle efficiently arbitrary number of concurrent
requests from a single thread.

Disadvantage: queuing of IPC operations requires memory
allocations and bookkeeping within the kernel.
But: in-kernel representation of IPC operations is fixed-size and small.

 Many cases achieve competitive performance with simpler
synchronous IPC (e.g., in Linux)

12 Alexander van der Grinten, The Managarm Project

Managarm: A Fully Asynchronous Operating System



IPC: overview

I IPC is only dispatched when both sender/receiver are ready.

I IPC operations (e.g., send/receive) are queued.

I Message contents (= bytes) are not queued.

Advantage: can handle efficiently arbitrary number of concurrent
requests from a single thread.

Disadvantage: queuing of IPC operations requires memory
allocations and bookkeeping within the kernel.
But: in-kernel representation of IPC operations is fixed-size and small.

 Many cases achieve competitive performance with simpler
synchronous IPC (e.g., in Linux)

12 Alexander van der Grinten, The Managarm Project

Managarm: A Fully Asynchronous Operating System



IPC streams

Managarm uses “streams” as IPC primitive.

I Two endpoints per stream.

Threads post “actions” (= IPC operations) to each endpoint of
the stream.

I Examples: sending/receiving bytes, transfering capabilities.

I Actions on both ends are matched against each other and
dispatched: first action on first endpoint is matched to first action on

second endpoint, . . .

I Actions on both ends of the stream must be compatible:

send/receiveX, send/send×.

A single IPC syscall can submit multiple actions to a stream.

13 Alexander van der Grinten, The Managarm Project

Managarm: A Fully Asynchronous Operating System



IPC streams

Managarm uses “streams” as IPC primitive.

I Two endpoints per stream.

Threads post “actions” (= IPC operations) to each endpoint of
the stream.

I Examples: sending/receiving bytes, transfering capabilities.

I Actions on both ends are matched against each other and
dispatched: first action on first endpoint is matched to first action on

second endpoint, . . .

I Actions on both ends of the stream must be compatible:

send/receiveX, send/send×.

A single IPC syscall can submit multiple actions to a stream.

13 Alexander van der Grinten, The Managarm Project

Managarm: A Fully Asynchronous Operating System



IPC streams

Managarm uses “streams” as IPC primitive.

I Two endpoints per stream.

Threads post “actions” (= IPC operations) to each endpoint of
the stream.

I Examples: sending/receiving bytes, transfering capabilities.

I Actions on both ends are matched against each other and
dispatched: first action on first endpoint is matched to first action on

second endpoint, . . .

I Actions on both ends of the stream must be compatible:

send/receiveX, send/send×.

A single IPC syscall can submit multiple actions to a stream.

13 Alexander van der Grinten, The Managarm Project

Managarm: A Fully Asynchronous Operating System



IPC streams

Managarm uses “streams” as IPC primitive.

I Two endpoints per stream.

Threads post “actions” (= IPC operations) to each endpoint of
the stream.

I Examples: sending/receiving bytes, transfering capabilities.

I Actions on both ends are matched against each other and
dispatched: first action on first endpoint is matched to first action on

second endpoint, . . .

I Actions on both ends of the stream must be compatible:

send/receiveX, send/send×.

A single IPC syscall can submit multiple actions to a stream.

13 Alexander van der Grinten, The Managarm Project

Managarm: A Fully Asynchronous Operating System



IPC streams

Managarm uses “streams” as IPC primitive.

I Two endpoints per stream.

Threads post “actions” (= IPC operations) to each endpoint of
the stream.

I Examples: sending/receiving bytes, transfering capabilities.

I Actions on both ends are matched against each other and
dispatched: first action on first endpoint is matched to first action on

second endpoint, . . .

I Actions on both ends of the stream must be compatible:

send/receiveX, send/send×.

A single IPC syscall can submit multiple actions to a stream.

13 Alexander van der Grinten, The Managarm Project

Managarm: A Fully Asynchronous Operating System



Data transfer

Basic actions to send/receive bytes: SendFromBuffer /
RecvToBuffer (size must be known in advance).

Other send/receive actions to avoid copying in certain situations:

I RecvInline: receive data to the notification ring buffer
(as part of completion notification; bounded size).

I SendFromBufferSg: scatter-gather.

I . . .

All send* actions are compatible with all recv* actions.

Other actions allow transfering capabilities or have specialized
purposes (e.g., proving the identity of the thread that operates on the first

endpoint to the second endpoint).

14 Alexander van der Grinten, The Managarm Project

Managarm: A Fully Asynchronous Operating System



Data transfer

Basic actions to send/receive bytes: SendFromBuffer /
RecvToBuffer (size must be known in advance).

Other send/receive actions to avoid copying in certain situations:

I RecvInline: receive data to the notification ring buffer
(as part of completion notification; bounded size).

I SendFromBufferSg: scatter-gather.

I . . .

All send* actions are compatible with all recv* actions.

Other actions allow transfering capabilities or have specialized
purposes (e.g., proving the identity of the thread that operates on the first

endpoint to the second endpoint).

14 Alexander van der Grinten, The Managarm Project

Managarm: A Fully Asynchronous Operating System



Data transfer

Basic actions to send/receive bytes: SendFromBuffer /
RecvToBuffer (size must be known in advance).

Other send/receive actions to avoid copying in certain situations:

I RecvInline: receive data to the notification ring buffer
(as part of completion notification; bounded size).

I SendFromBufferSg: scatter-gather.

I . . .

All send* actions are compatible with all recv* actions.

Other actions allow transfering capabilities or have specialized
purposes (e.g., proving the identity of the thread that operates on the first

endpoint to the second endpoint).

14 Alexander van der Grinten, The Managarm Project

Managarm: A Fully Asynchronous Operating System



Data transfer

Basic actions to send/receive bytes: SendFromBuffer /
RecvToBuffer (size must be known in advance).

Other send/receive actions to avoid copying in certain situations:

I RecvInline: receive data to the notification ring buffer
(as part of completion notification; bounded size).

I SendFromBufferSg: scatter-gather.

I . . .

All send* actions are compatible with all recv* actions.

Other actions allow transfering capabilities or have specialized
purposes (e.g., proving the identity of the thread that operates on the first

endpoint to the second endpoint).

14 Alexander van der Grinten, The Managarm Project

Managarm: A Fully Asynchronous Operating System



Data transfer

Basic actions to send/receive bytes: SendFromBuffer /
RecvToBuffer (size must be known in advance).

Other send/receive actions to avoid copying in certain situations:

I RecvInline: receive data to the notification ring buffer
(as part of completion notification; bounded size).

I SendFromBufferSg: scatter-gather.

I . . .

All send* actions are compatible with all recv* actions.

Other actions allow transfering capabilities or have specialized
purposes (e.g., proving the identity of the thread that operates on the first

endpoint to the second endpoint).

14 Alexander van der Grinten, The Managarm Project

Managarm: A Fully Asynchronous Operating System



Request/response logic

It is often desirable to multiplex multiple concurrent
requests/responses over a single stream.

 Allows multiple clients to talk to same server.

Managarm uses “Offer”/“Accept” actions for this purpose.

I Offer/Accept pair creates a new “ancillary” stream
(Ancillary stream is usually short-lived and discarded after a single

request/response).

I Subsequent actions can be directed to the new stream
(without the need to invoke an additional syscall).

15 Alexander van der Grinten, The Managarm Project

Managarm: A Fully Asynchronous Operating System



Request/response logic

It is often desirable to multiplex multiple concurrent
requests/responses over a single stream.

 Allows multiple clients to talk to same server.

Managarm uses “Offer”/“Accept” actions for this purpose.

I Offer/Accept pair creates a new “ancillary” stream
(Ancillary stream is usually short-lived and discarded after a single

request/response).

I Subsequent actions can be directed to the new stream
(without the need to invoke an additional syscall).

15 Alexander van der Grinten, The Managarm Project

Managarm: A Fully Asynchronous Operating System



Request/response logic

It is often desirable to multiplex multiple concurrent
requests/responses over a single stream.

 Allows multiple clients to talk to same server.

Managarm uses “Offer”/“Accept” actions for this purpose.

I Offer/Accept pair creates a new “ancillary” stream
(Ancillary stream is usually short-lived and discarded after a single

request/response).

I Subsequent actions can be directed to the new stream
(without the need to invoke an additional syscall).

15 Alexander van der Grinten, The Managarm Project

Managarm: A Fully Asynchronous Operating System



Request/response logic

It is often desirable to multiplex multiple concurrent
requests/responses over a single stream.

 Allows multiple clients to talk to same server.

Managarm uses “Offer”/“Accept” actions for this purpose.

I Offer/Accept pair creates a new “ancillary” stream
(Ancillary stream is usually short-lived and discarded after a single

request/response).

I Subsequent actions can be directed to the new stream
(without the need to invoke an additional syscall).

15 Alexander van der Grinten, The Managarm Project

Managarm: A Fully Asynchronous Operating System



Example: client/server IPC

1st endpoint,
client

2nd endpoint,
server

Ancillary stream

Offer

Accept

SendFromBuffer

RecvInline

RecvToBuffer

SendFromBuffer

1. Server posts Accept → RecvInline (to receive a request).
2. Client posts Offer → SendFromBuffer → RecvToBuffer

(to send a request and receive a response).
3. Server posts SendFromBuffer (to send the response).

16 Alexander van der Grinten, The Managarm Project

Managarm: A Fully Asynchronous Operating System



Example: client/server IPC

1st endpoint,
client

2nd endpoint,
server

Ancillary stream

Offer

Accept

SendFromBuffer

RecvInline

RecvToBuffer

SendFromBuffer

1. Server posts Accept → RecvInline (to receive a request).

2. Client posts Offer → SendFromBuffer → RecvToBuffer

(to send a request and receive a response).
3. Server posts SendFromBuffer (to send the response).

16 Alexander van der Grinten, The Managarm Project

Managarm: A Fully Asynchronous Operating System



Example: client/server IPC

1st endpoint,
client

2nd endpoint,
server

Ancillary stream

Offer

Accept

SendFromBuffer

RecvInline

RecvToBuffer

SendFromBuffer

1. Server posts Accept → RecvInline (to receive a request).

2. Client posts Offer → SendFromBuffer → RecvToBuffer

(to send a request and receive a response).
3. Server posts SendFromBuffer (to send the response).

16 Alexander van der Grinten, The Managarm Project

Managarm: A Fully Asynchronous Operating System



Example: client/server IPC

1st endpoint,
client

2nd endpoint,
server

Ancillary stream

Offer

Accept

SendFromBuffer

RecvInline

RecvToBuffer

SendFromBuffer

1. Server posts Accept → RecvInline (to receive a request).
2. Client posts Offer → SendFromBuffer → RecvToBuffer

(to send a request and receive a response).

3. Server posts SendFromBuffer (to send the response).

16 Alexander van der Grinten, The Managarm Project

Managarm: A Fully Asynchronous Operating System



Example: client/server IPC

1st endpoint,
client

2nd endpoint,
server

Ancillary stream

Offer

Accept

SendFromBuffer

RecvInline

RecvToBuffer

SendFromBuffer

1. Server posts Accept → RecvInline (to receive a request).
2. Client posts Offer → SendFromBuffer → RecvToBuffer

(to send a request and receive a response).

3. Server posts SendFromBuffer (to send the response).

16 Alexander van der Grinten, The Managarm Project

Managarm: A Fully Asynchronous Operating System



Example: client/server IPC

1st endpoint,
client

2nd endpoint,
server

Ancillary stream

Offer

Accept

SendFromBuffer

RecvInline

RecvToBuffer

SendFromBuffer

1. Server posts Accept → RecvInline (to receive a request).
2. Client posts Offer → SendFromBuffer → RecvToBuffer

(to send a request and receive a response).
3. Server posts SendFromBuffer (to send the response).

16 Alexander van der Grinten, The Managarm Project

Managarm: A Fully Asynchronous Operating System



Example: client/server IPC

1st endpoint,
client

2nd endpoint,
server

Ancillary stream

Offer

Accept

SendFromBuffer

RecvInline

RecvToBuffer

SendFromBuffer

1. Server posts Accept → RecvInline (to receive a request).
2. Client posts Offer → SendFromBuffer → RecvToBuffer

(to send a request and receive a response).
3. Server posts SendFromBuffer (to send the response).

16 Alexander van der Grinten, The Managarm Project

Managarm: A Fully Asynchronous Operating System



Example: client/server IPC

1st endpoint,
client

2nd endpoint,
server

Ancillary stream

Offer

Accept

SendFromBuffer

RecvInline

RecvToBuffer

SendFromBuffer

1. Server posts Accept → RecvInline (to receive a request).
2. Client posts Offer → SendFromBuffer → RecvToBuffer

(to send a request and receive a response).
3. Server posts SendFromBuffer (to send the response).

16 Alexander van der Grinten, The Managarm Project

Managarm: A Fully Asynchronous Operating System



Acknowledgements
Check out the paper for more details:

I Design of the kernel ↔ user space ring buffer

I Memory management

I POSIX emulation

Check out the project: github.com/managarm/managarm

Blog: managarm.org Twitter: @managarm_OS

Thanks to all contributors!

Thank You! Questions?

17 Alexander van der Grinten, The Managarm Project

Managarm: A Fully Asynchronous Operating System

github.com/managarm/managarm
managarm.org
@managarm_OS


Acknowledgements
Check out the paper for more details:

I Design of the kernel ↔ user space ring buffer

I Memory management

I POSIX emulation

Check out the project: github.com/managarm/managarm

Blog: managarm.org Twitter: @managarm_OS

Thanks to all contributors!

Thank You! Questions?

17 Alexander van der Grinten, The Managarm Project

Managarm: A Fully Asynchronous Operating System

github.com/managarm/managarm
managarm.org
@managarm_OS


Acknowledgements
Check out the paper for more details:

I Design of the kernel ↔ user space ring buffer

I Memory management

I POSIX emulation

Check out the project: github.com/managarm/managarm

Blog: managarm.org Twitter: @managarm_OS

Thanks to all contributors!

Thank You! Questions?

17 Alexander van der Grinten, The Managarm Project

Managarm: A Fully Asynchronous Operating System

github.com/managarm/managarm
managarm.org
@managarm_OS

