

Towards Hybrid Storage Devices with Block and DAX Interface

Daniel Habicht, Yussuf Khalil, Lukas Werling, Frank Bellosa

(Re)defining Hybrid Storage

Dual-Paradigm:

- Asynchronous Block I/O
- Synchronous load/store
- Flash for backing storage
- Storage-Class Memory (SCM) for load/store access on storage
- Our contribution:
 OS abstractions for hybrid storage

Hybrid Storage: Use Cases & Prior Research

Advantages of SCM at price close to Flash

- Memory Tiering
 - Cheap DRAM replacement
 - Hybrid storage device for slow tier memory
 - Not discussed here further
- Hybrid storage for I/O
 - File systems (journaling, cross-media fs)
 - Apps with strong persistence requirements e.g., write-ahead logging (WAL) in DBMS
 - Transparent use of SCM in unmodified applications

"2B-SSD" D.-H. Bae et al. (ISCA '18)

"FlatFlash" A. Abulila et al. (ASPLOS '19)

"Hello bytes, bye blocks" M. Jung (HotStorage '22)

Hybrid Storage: Why Now?

SCMs available for years but no commercial hybrid storage

- PCIe unfit for hybrid storage
 - read/write transaction not optimized for low-latency operation
 - Host cannot cache device-attached memory

Compute Express Link (CXL)

- Growing availability of CXL-capable hardware
- CXL.mem for low-latency load/store semantics on device-attached memory
- Global Persistent Flush (GPF)

First commercial offerings on horizon (Samsung's CMM-H)

Hybrid Storage: Challenges

- Abstraction for hybrid storage
- Coherency of interfaces
- Limited SCM capacity
 - Fairness
 - Performance guarantees
- Transparent use of SCM

Linux Direct-Access (DAX)

DAX bypasses the page cache (zero-copy access)
 Currently supported by ext2, ext4 and XFS

Per-inode DAX flag → no fine-granular control
 Assumes non-blocking access at all times
 →cannot use swapping mechanism for SCM cache

Linux Direct-Access (DAX)

DAX bypasses the page cache (zero-copy access)
 Currently supported by ext2, ext4 and XFS

Per-inode DAX flag → no fine-granular control
 Assumes non-blocking access at all times
 →cannot use swapping mechanism for SCM cache

Existing DAX support unsuitable for hybrid storage

Supporting Hybrid Storage in Linux

No hardware development platform for hybrid storage
 →Emulate hybrid storage with PMEM + NVMe SSD
 →Implement cache management inside OS

First approach: build indirection on top of existing DAX support

- Requires reimplementation of many core mm components
- Too much complexity, prone to errors

Persistency-aware Page Cache

- Reuse existing mm functionality
- Few changes in FS required

User Space API for Hybrid Storage

mmap with MAP_DAX flag for requesting DAX mapping
 Must be used with MAP_SHARED_VALIDATE

- mlock for pinning page to SCM cache
 - Guarantees absence of major faults
 - New rlimit for controlling amount of pinned DAX pages
- Global limit for total amount of pinned DAX pages
- Direct I/O directly on SCM cache

Persistency-aware Page Cache

Persistency-aware Page Cache

Persistency-aware Page Cache

10 15.03.2024 D. Habicht et al. – Towards Hybrid Storage Devices with Block and DAX Interface

DAX and non-DAX VMAs might overlap

Split VMAs and upgrade to DAX

DAX and non-DAX VMAs might overlap

Split VMAs and upgrade to DAX

- DAX and non-DAX VMAs might overlap
- Split VMAs and upgrade to DAX
- DAX upgrade affects other processes
 VMA splitting might fail (mmap limit)
 - Locking difficult (cyclic dependency)

DAX and non-DAX VMAs might overlap

Split VMAs and upgrade to DAX

DAX upgrade affects other processes
 VMA splitting might fail (mmap limit)
 Locking difficult (cyclic dependency)

Undo upgrade when possible?

Bypassing Synchronous Write-Back

Synchronous writeback critical for performance

- →skip write-back of SCM pages
- SCM pages remain dirty
- SCM guarantees persistence
- Asynchronous write-back unchanged
 - Performance not critical
 - Clean pages beneficial for reclaim
- Dynamically upgrade frequently synced file ranges to SCM

What's Next

- Transparent DAX Mappings (TDM)
 - Kernel dynamically maps SCM to user space
 - TDM-aware libc implements zero-copy read/write in user space
 - Improve performance and power usage
- CXL hybrid storage prototype
 - FPGA-based
 - OpenExpress (NVMe development platform)
 - Comparison to Samsung's CMM-H

"OpenExpress" M. Jung (ATC '20)

Summary

- Upcoming CXL hybrid storage
 - Asynchronous block I/O
 - Synchronous load/store
- Existing OS support lacking
- Linux support for hybrid storage
 Persistency-aware page cache
 Durage page cache
 - Bypass synchronous write-back
 - TDMs for better SCM utilization

