
Full-Scale File System Acceleration on GPU

Peter Maucher, Lennard Kittner, Nico Rath, Gregor Lucka, Lukas Werling, Yussuf Khalil, Thorsten Gröninger,
Frank Bellosa | March 15, 2024

KIT – The Research University in the Helmholtz Association www.kit.edu

https://www.kit.edu


Contemporary GPU Data Path
GPU applications need data from storage
Request send to and handled by CPU

Silberstein et al.: file system calls on GPU
Request handled on CPU

Proposed: GPU4FS
GPU4FS: file system calls + handling on GPU
Lower latency for applications on GPU
More CPU time for applications on CPU

Motivation Methodology Preliminary Results Future Work Conclusion

2/11 15. 03. 2024 P. Maucher et al.: GPU4FS Karlsruhe Institute of Technology (KIT)

File System on GPU



Persistent data store
Nested folder organization
Map blocks on drive to files, folders, …

Well-understood interface
Ubiquitous usage in multiple programming languages

EXT4, BTRFS, ZFS, Nova, WineFS, XFS, …

Common acceleration strategies: lookup tables, trees

Motivation Methodology Preliminary Results Future Work Conclusion

3/11 15. 03. 2024 P. Maucher et al.: GPU4FS Karlsruhe Institute of Technology (KIT)

File Systems



Massively parallel vector processor
More compute than CPU

Dedicated memory area
Relatively slow interconnect

⇒ Rethink FS datapath, caches

Bandwidth-optimized, not for pointer-chasing
Optimized for branchless code

⇒ Indirect loads, esp. trees, difficult

⇒ Rethink full FS structure

Motivation Methodology Preliminary Results Future Work Conclusion

4/11 15. 03. 2024 P. Maucher et al.: GPU4FS Karlsruhe Institute of Technology (KIT)

GPUs



Full-Scale File System
Well-understood High-level Interface

Widespread support
Developer familiarity

Data Integrity
RAID
Checksums
Crash Consistency

Full-Scale Acceleration on GPU
Latency Reduction

GPU-App to FS
Inner-FS

Consistency
GPU controls progress, completion
Parallel journaling, CoW, garbage collection

Performance
Exploit small-scale parallelism
Allow expensive FS features

Motivation Methodology Preliminary Results Future Work Conclusion

5/11 15. 03. 2024 P. Maucher et al.: GPU4FS Karlsruhe Institute of Technology (KIT)

Full-Scale File System Acceleration on GPU



Motivation Methodology Preliminary Results Future Work Conclusion

6/11 15. 03. 2024 P. Maucher et al.: GPU4FS Karlsruhe Institute of Technology (KIT)

Overall Design



POSIX
fd = open("talk.pdf");
fstat(fd, &st);
buf = malloc(st.st_size);
read(fd, buf, st.st_size);
close(fd);

Multiple syscalls
Pass through Virtual File System (VFS)
Racy

Not what defines FS

GPU4FS Primary Interface
Area result = GET("talk.pdf");

Read data, metadata atomically
Allocate while loading
Write data in shared area

Freedom to improve on GPU:
No legacy code
Different requirements

Motivation Methodology Preliminary Results Future Work Conclusion

7/11 15. 03. 2024 P. Maucher et al.: GPU4FS Karlsruhe Institute of Technology (KIT)

Contemporary File System Interface



10 kB 100 kB 1MB 10MB 100MB
0

0.5

1

1.5

File Size

Ba
nd

wi
dt

h
[G

iB
/s

]

GPU4FS
GPU BW limit

Question: FS on GPU inherently slow?
Measured: Minimal FS vs max raw GPU
access bandwidth
1 file written to folder

Small files slow ⇒ startup latency

Max GPU bandwidth achievable

Motivation Methodology Preliminary Results Future Work Conclusion

8/11 15. 03. 2024 P. Maucher et al.: GPU4FS Karlsruhe Institute of Technology (KIT)

Preliminary Results: No Inherent Bandwidth Limit



1 10 100 1000

100 µs

1ms

10ms

100ms

Number of Folders

Ti
m

e

GPU4FS
CPU EXT4
Startup Latency

be
tt

er

Implement mkdir -p a/b/c/d/e/…/zzz
Single command on GPU
Repeated mkdirat() in POSIX

Large startup latency
Slower than CPU

Small runtime increase per directory
Comes close to CPU for deep directories

Motivation Methodology Preliminary Results Future Work Conclusion

9/11 15. 03. 2024 P. Maucher et al.: GPU4FS Karlsruhe Institute of Technology (KIT)

Interface: Deep Directory Creation



Consistency
Latency high
GPU drivers less stable
More application and FS parallelism

Global write barriers slow
Local fsync()/msync() meaningless

Disk Allocation / Garbage Collection
Widely different allocation sizes => pre-partitioning
difficult
Allocation sizes unknown at config time
Large allocations infrequent

Garbage collection as background task
Consistency implementation informs GC

Goals
Exploit parallelism
Reduce latency

Motivation Methodology Preliminary Results Future Work Conclusion

10/11 15. 03. 2024 P. Maucher et al.: GPU4FS Karlsruhe Institute of Technology (KIT)

Future Work



GPU latency reduction
CPU time reduction
New interface

Results say: Lets try!

Motivation Methodology Preliminary Results Future Work Conclusion

11/11 15. 03. 2024 P. Maucher et al.: GPU4FS Karlsruhe Institute of Technology (KIT)

Run your FS on GPU!


	Motivation
	Methodology
	Preliminary Results
	Future Work
	Conclusion

