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Contemporary GPU Data Path
GPU applications need data from storage
Request send to and handled by CPU

Silberstein et al.: file system calls on GPU
Request handled on CPU

Proposed: GPU4FS
GPU4FS: file system calls + handling on GPU
Lower latency for applications on GPU
More CPU time for applications on CPU
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File System on GPU



Persistent data store
Nested folder organization
Map blocks on drive to files, folders, …

Well-understood interface
Ubiquitous usage in multiple programming languages

EXT4, BTRFS, ZFS, Nova, WineFS, XFS, …

Common acceleration strategies: lookup tables, trees
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File Systems



Massively parallel vector processor
More compute than CPU

Dedicated memory area
Relatively slow interconnect

⇒ Rethink FS datapath, caches

Bandwidth-optimized, not for pointer-chasing
Optimized for branchless code

⇒ Indirect loads, esp. trees, difficult

⇒ Rethink full FS structure
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GPUs



Full-Scale File System
Well-understood High-level Interface

Widespread support
Developer familiarity

Data Integrity
RAID
Checksums
Crash Consistency

Full-Scale Acceleration on GPU
Latency Reduction

GPU-App to FS
Inner-FS

Consistency
GPU controls progress, completion
Parallel journaling, CoW, garbage collection

Performance
Exploit small-scale parallelism
Allow expensive FS features
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Full-Scale File System Acceleration on GPU
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Overall Design



POSIX
fd = open("talk.pdf");
fstat(fd, &st);
buf = malloc(st.st_size);
read(fd, buf, st.st_size);
close(fd);

Multiple syscalls
Pass through Virtual File System (VFS)
Racy

Not what defines FS

GPU4FS Primary Interface
Area result = GET("talk.pdf");

Read data, metadata atomically
Allocate while loading
Write data in shared area

Freedom to improve on GPU:
No legacy code
Different requirements
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Contemporary File System Interface
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Question: FS on GPU inherently slow?
Measured: Minimal FS vs max raw GPU
access bandwidth
1 file written to folder

Small files slow ⇒ startup latency

Max GPU bandwidth achievable
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Preliminary Results: No Inherent Bandwidth Limit



1 10 100 1000

100 µs

1ms

10ms

100ms

Number of Folders

Ti
m

e

GPU4FS
CPU EXT4
Startup Latency

be
tt

er

Implement mkdir -p a/b/c/d/e/…/zzz
Single command on GPU
Repeated mkdirat() in POSIX

Large startup latency
Slower than CPU

Small runtime increase per directory
Comes close to CPU for deep directories
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Interface: Deep Directory Creation



Consistency
Latency high
GPU drivers less stable
More application and FS parallelism

Global write barriers slow
Local fsync()/msync() meaningless

Disk Allocation / Garbage Collection
Widely different allocation sizes => pre-partitioning
difficult
Allocation sizes unknown at config time
Large allocations infrequent

Garbage collection as background task
Consistency implementation informs GC

Goals
Exploit parallelism
Reduce latency
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Future Work



GPU latency reduction
CPU time reduction
New interface

Results say: Lets try!
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Run your FS on GPU!
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