
C Fee
Continuous Feedback

Leveraging Continuous Feedback in Education to Increase C Code Quality

Max Schrötter, Bettina Schnor

University of Potsdam

Institute for Computer Science

March 15, 2024

Current Situation

“How Secure are our Computer Systems Courses?” 1

• analyzed 760.000 lines of code of students and instructors from 20 top
universities

• students are not taught the security implications of using unsafe
functions

• by frequently using unsafe functions, instructors and textbooks are
passively teaching students to use them

• students can graduate with a CS major without taking any computer
security course

“The real problem lies in students’ lack of more fundamental

knowledge and skills, such as paying attention to compiler and OS

messages and carefully reading documentation.” 2

1
Almansoori et. al., How Secure are our Computer Systems Courses in ICER ’20, 2020

2
Almansoori et. al., Towards finding the missing pieces to teach secure programming skills to students in SIGCSE 2023

Max Schrötter CoFee 1 / 17

Current Situation

“How Secure are our Computer Systems Courses?” 1

• analyzed 760.000 lines of code of students and instructors from 20 top
universities

• students are not taught the security implications of using unsafe
functions

• by frequently using unsafe functions, instructors and textbooks are
passively teaching students to use them

• students can graduate with a CS major without taking any computer
security course

experiences at University of Potsdam
• security problems not limited to unsafe functions
• race conditions, memory safety vulnerabilities, non robust programs ...

1
Almansoori et. al., How Secure are our Computer Systems Courses in ICER ’20, 2020

Max Schrötter CoFee 1 / 17

Current Situation

“How Secure are our Computer Systems Courses?” 1

• analyzed 760.000 lines of code of students and instructors from 20 top
universities

• students are not taught the security implications of using unsafe
functions

• by frequently using unsafe functions, instructors and textbooks are
passively teaching students to use them

• students can graduate with a CS major without taking any computer
security course

experiences at University of Potsdam
• security problems not limited to unsafe functions
• race conditions, memory safety vulnerabilities, non robust programs ...

→Secure and robust programming should be taught alongside the normal

curriculum
1
Almansoori et. al., How Secure are our Computer Systems Courses in ICER ’20, 2020

Max Schrötter CoFee 1 / 17

CoFee: Continuous Feedback

Many frameworks have been created2:
• focus on functional tests
• tightly coupled with analyzers
• most frameworks are no longer maintained

C Fee
Continuous Feedback

• focuses on code security and robustness
• offers fast and continuous feedback
• adds meaningful hints for undergraduate students
• hides complex configurations of static analysis tools
• modular design and loosely integrates various state of the art tools
• situated learning: integration of common software development

workflows

2https://systemscorpus.strickroth.net

Max Schrötter CoFee 2 / 17

https://systemscorpus.strickroth.net

CoFee: Continuous Feedback

Many frameworks have been created2:
• focus on functional tests
• tightly coupled with analyzers
• most frameworks are no longer maintained

C Fee
Continuous Feedback

• focuses on code security and robustness
• offers fast and continuous feedback
• adds meaningful hints for undergraduate students
• hides complex configurations of static analysis tools
• modular design and loosely integrates various state of the art tools
• situated learning: integration of common software development

workflows

2https://systemscorpus.strickroth.net

Max Schrötter CoFee 2 / 17

https://systemscorpus.strickroth.net

Repository

1.Clones or Creates

2. Commits Code

Gitlab CI/CD

3. Starts Pipeline

4.1 Start Clean
Container

4.2 Run Test4.3 Parse
Diagnostics

4.4 Create Unit
Test Report

5. Generate
HTML Report

Gitlab Pages

6.Views Results

4. For each Test

Student

Max Schrötter CoFee 3 / 17

Evaluation of Code Analyzers for Education

Our test suite is based on Secure Coding Standards (SEI-CERT) and past

experiences

1 Memory Violations: Use-After-Free, Memory Leak, Allocation Size,

Pointer Manipulation, Null Pointer Dereference, Uninitialized Memory,

etc.

2 Unchecked Return Values: CWE252, library function return values

should be checked for errors (code robustness)

3 Thread Safety: Race Conditions, Mutex Deadlock, Improper Locking

4 String & IO: String Terminator, User Format Strings, File Handling,

Accessesing Closed File Descriptor

5 Misc: One Definition Rule, Int Overflow, Signal Safety, Non-Reentrant,

Inclusion of C-Files, Errno Handling

for full list see https://doi.org/10.1109/CSCI58124.2022.00351

Max Schrötter CoFee 4 / 17

https://doi.org/10.1109/CSCI58124.2022.00351

Code Analyzer Results
only considered tools withouth manual instrumentation

focused on established open source tools

including the three overall winners of the SV-Comp 20223:

Symbiotic, CPAChecker, UAutomizer

Category: SAN4 CSA Tidy5 GCC Valgrind ESBMC Symbiotic

Memory 52/98 66/98 62/98 16/98 60/98 52/98 52/98

Error Handling 0/9 0/9 0/9 0/9 0/9 0/9 0/9

Threads 9/10 1/10 0/10 0/10 0/10 0/10 0/10

IO 2/23 8/23 12/23 12/23 8/23 8/23 0/23

Misc 0/24 0/24 1/24 0/24 0/24 0/24 0/24

Ringbuf 1/1 0/1 0/1 0/1 0/1 1/1 0/1

3Dirk Beyer, Progress on Software Verification: SV-COMP 2022 in TACAS 2022
4Google Sanatizers: ASAN, MSAN, TSAN, UBSAN
5also enables some CSA checks

Max Schrötter CoFee 5 / 17

Detected Mistakes for the OS-Course 2022/23

Error Category Number Error Category Number

segmentation fault 180 use after free 41

use of uninitialized variable 149 use of unsafe functions 36

memory leak 126 incompatible pointer conversion 21

null dereference 85 double free 19

missing error check for allocation 82 data races 15

buffer overflow 54 bugprone include 12

TCP segmentation violation 52 async signal violation 1

resource leak: unclosed streams 47

in 2022 a simple static analyzer that detects if error handling is

missing for malloc & calloc was added

Max Schrötter CoFee 6 / 17

Why is Error Handling Relevant?

CVE-2019-15504, Linux Kernel, CVSS: 9.8

Hui Peng andMathias Payer discovered that the 91x Wi-Fi driver in the Linux kernel

did not properly handle error conditions on initialization, leading to a double-free

vulnerability. A physically proximate attacker could use this to cause a denial of

service (system crash).

CVE-2023-23004, Linux Kernel, CVS: 5.5

CVE-2023-0401, OpenSSL, CVS: 7.5

A NULL pointer can be dereferenced when signatures are being verified on PKCS7

signed or signedAndEnveloped data. In case the hash algorithm used for the

signature is known to the OpenSSL library but the implementation of the hash

algorithm is not available the digest initialization will fail. There is a missing
check for the return value from the initialization function which later leads to

invalid usage of the digest API most likely leading to a crash.

Max Schrötter CoFee 7 / 17

CoFee-Error-Handling-Analyzer (CoFee-EHA)

error handling bugs need to be detected before results are used.

function specification inspired by Glibc and POSIX function signatures
• returns valid pointer or NULL or -1 on failure
• returns a valid integer or -1 on failure
• returns 0 on success or -1 on failure and results via parameter
• returns 0 on success or -1 on failure and has no results (side effects:

setuid)

malloc|1|-1|NULL;open|2|-1|-1;read|3|1|-1

CoFee-EHA tracks result and error symbol

If result is accessed while error symbol can be the error value

→error handling is missing or faulty

Max Schrötter CoFee 8 / 17

CoFee-Error-Handling-Analyzer (CoFee-EHA)

error handling bugs need to be detected before results function call

are used.

function specification inspired by Glibc and POSIX function signatures

CoFee-EHA tracks result and error symbol

If result is accessed while error symbol can be the error value

→error handling is missing or faulty

Relies on Clang Static Analyzers Symbolic Engine
• checkPostStmt to register the symbols in the program state
• checkLocation to check if the tracked symbols are loaded or assigned
• checkPreStmt (CheckPreCall) to check if the tracked symbols is

passed to a function
• checkDeadSymbols to get notified if a symbol moves out of scope

Max Schrötter CoFee 9 / 17

Example

1 int main (){
2 int fd;
3 char* buf=malloc(64*sizeof(char));
4 if (buf === (void*)-1) { exit(EXIT_FAILURE); }
5 fd = open("/tmp/file", 0);
6 int res = read(fd, buf, 63);
7 buf[res] = '\0';
8 printf("%s\n", buf);
9 }

Max Schrötter CoFee 10 / 17

DEMO

Max Schrötter CoFee 11 / 17

Diagnostics Support

CoFee parses the following:

text output of: make, ld, clang-tidy and LLVM sanitizers

plist files from: Scan-Build, CodeChecker

JUnit XML files

Valgrind XML

GCC json diagnostics

Max Schrötter CoFee 12 / 17

CoFee EHA

Analyzed on Student Submissions in Operating Systems from

University of Potsdam in 2022

101 Submissions

manual analysis found 178 errors

CoFee EHA detected 148 correctly →recall 83.15%

CoFee EHA reported 9 false positives →precision 94.27%

• Problem: error handling with recovery & merged control flow

rc = setsockopt(s,SOL_SOCKET,SO_RCVBUF,(char *) &option_value,sizeof(int));
if (rc < 0) {

perror("setsockopt(SO_RCVBUF) failed");

fprintf(stderr, "Continuing with smaller buffer.\n");
}

Max Schrötter CoFee 13 / 17

CoFee EHA

Analyzed on Student Submissions in Operating Systems from

University of Potsdam in 2022

101 Submissions

manual analysis found 178 errors

CoFee EHA detected 148 correctly →recall 83.15%

CoFee EHA reported 9 false positives →precision 94.27%

• Problem: error handling with recovery & merged control flow

rc = setsockopt(s,SOL_SOCKET,SO_RCVBUF,(char *) &option_value,sizeof(int));
if (rc < 0) {

perror("setsockopt(SO_RCVBUF) failed");

fprintf(stderr, "Continuing with smaller buffer.\n");
}

Max Schrötter CoFee 13 / 17

Results

first lastin between
Commits

0

5

10

15

20

25

30

Nu
m

be
r o

f E
rro

rs

Missing Errorhandling
for Malloc & Calloc

Max Schrötter CoFee 14 / 17

Evaluation

Average points in %

Exercise without CoFee with CoFee Difference

Ring Buffer 63 81 +18

Process Table 64 70 +6

Process Creation 77 74 -3

POSIX Threads 68 72 +4

IPC 76 88 +12

Signal Handler 49 84 +35

Reader/Writer Locks 53 70 +17

Max Schrötter CoFee 15 / 17

Conclusion & Future Work
Conclusion:

CoFee is a modular framework intended to increase code quality

tool configuration is hidden from students

situated learning: introduces common software engineering

workflows early

evaluation shows a significant uplift in points

lightweight: no database or other infrastructure than gitlab needed

Future Work:

support Sarif-v2 (incl. editor integration)

improving hints: include Error Values (pedagogical Question)

reduce false positives

Demo: https://gitlab.com/cofee-demo/c-demo

CoFee: https://gitlab.com/schrc3b6/cofee_up

Max Schrötter CoFee 16 / 17

https://gitlab.com/cofee-demo/c-demo
https://gitlab.com/schrc3b6/cofee_up

Thank You for Your Attention

Thanks to all contributors:

Matthias Habich

Maximilian Falk

Kai Schlabitz

all Tutors and participating Students

Max Schrötter CoFee 17 / 17

References I

[1] M. Schrötter, M. Falk and B. Schnor, “Automated detection of bugs in

error handling for teaching secure c programming,” inProceedings of

the Sixth Workshop ’Automatische Bewertung von

Programmieraufgaben’ (ABP 2023) Gesellschaft für Informatik e.V.,

2023. doi: 10.18420/abp2023-1.

[2] M. Schrötter and B. Schnor, “Leveraging continuous feedback in

education to increase c code quality,” in2022 International Conference

on Computational Science and Computational Intelligence (CSCI) 2022,

pages 1950–1956. doi: 10.1109/CSCI58124.2022.00351.

Max Schrötter CoFee 18 / 17

https://doi.org/10.18420/abp2023-1
https://doi.org/10.1109/CSCI58124.2022.00351

References II

[3] M. Almansoori, J. Lam, E. Fang, A. G. Soosai Raj and R. Chatterjee,

“Towards finding the missing pieces to teach secure programming

skills to students,” inProceedings of the 54th ACM Technical

Symposium on Computer Science Education V. 1 jourser SIGCSE 2023,

New York, NY, USA: Association for Computing Machinery, 2023,

pages 973–979, isbn: 9781450394314. doi:

10.1145/3545945.3569730. url:

https://doi.org/10.1145/3545945.3569730.

[4] S. Strickroth and M. Striewe, “Building a corpus of task-based grading

and feedback systems for learning and teaching programming,”

International Journal of Engineering Pedagogy (iJEP), jourvol 12,

number 5, pp. 26–41, november 2022. doi:

10.3991/ijep.v12i5.31283.

Max Schrötter CoFee 19 / 17

https://doi.org/10.1145/3545945.3569730
https://doi.org/10.1145/3545945.3569730
https://doi.org/10.3991/ijep.v12i5.31283

References III

[5] M. Almansoori, J. Lam, E. Fang, K. Mulligan, A. G. Soosai Raj and

R. Chatterjee, “How secure are our computer systems courses?”

inProceedings of the 2020 ACM Conference on International Computing

Education Research jourser ICER ’20, Virtual Event, New Zealand:

Association for Computing Machinery, 2020, pages 271–281, isbn:

9781450370929. doi: 10.1145/3372782.3406266.

Max Schrötter CoFee 20 / 17

https://doi.org/10.1145/3372782.3406266

