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Abstract

Modern NVMe stacks permit legal completion reordering,
yet the QoS impact of this within-spec scheduling freedom is
rarely evaluated systematically. We present NVMe-lite, a de-
terministic model of an NVMe-like host–device protocol that
isolates completion scheduling from protocol state to enable
reproducible exploration. We treat the schedule as a second
input and parameterize reordering freedom with a bound 𝑘 ,
sweeping 𝑘 across FIFO, Random, Batched, and Adversarial
policies, and considering fault modes (NONE, TIMEOUT,
RESET). Our results show risk cliffs, beyond policy-specific
thresholds, small increases in 𝑘 trigger abrupt transitions
into a high-tail state, while other policies remain stable. We
quantify realized reordering via a normalized inversion met-
ric (RD) and report p95 latency in scheduler steps. Finally,
we extract top-𝐾 poison schedules as deterministic traces for
replay and regression testing, and validate a subset differen-
tially against an independent C implementation. NVMe-lite
supports systematic QoS robustness validation of compliant
host–device stacks.

1 Introduction

Operating Systems often interact with fast I/O devices via
asynchronous host-device protocols with queue-based data
structures in shared memory. With NVMe, the host provides
commands in Submission Queues and the controller returns
completions as entries in Completion Queues. The visible
completion order need not be the same as the submission
order, because commands may complete out of order [14].
A structurally similar pattern is found in VirtIO, where de-
scriptor indices are exchanged between driver and device via
Available- and Used-rings [16]. Such queue protocols enable
high parallelism, but shift complexity into the schedule. The
runtime behavior arises from interleavings of host actions,
device progress, notifications, and recovery events.
This schedule variability is not merely noise around a

mean, but often affects tail latency. NVMe, for example, al-
lows interrupt coalescing, i.e., interrupts can be bundled or
delayed to reduce host overhead, which directly influences la-
tency distributions [14]. In large and parallelized systems, tail
effects are particularly critical. Rare delays of individual com-
ponents can dominate the end-to-end tail (Tail at Scale) [5].

Common evaluations, however, often treat reordering and
schedule effects only implicitly (e.g. as random variation),
instead of systematically investigating reordering freedom as
a controllable parameter.

This challenge is exacerbated by the necessity to also han-
dle error and recovery paths robustly. In practice, I/O time-
outs exist. Under Linux, for example, the boot parameter
nvme_core.io_timeout can be used (documentation states
a default of 30 s) [1]. Additionally, controller resets are part of
the realistic operating picture of NVMe-based systems [15].
Precisely such paths are difficult to test, because they occur
rarely, but in the event of an error must function correctly
and performantly.

This work addresses the gap between protocol-close com-
plexity and reproducible, systematic schedule evaluation.
Real NVMe stacks are often too variant-rich for the targeted
investigation of large schedule spaces (firmware/hardware
differences, instrumentation effort), so we use a lightweight
but protocol-close model NVMe-lite1. We investigate the de-
vice side along two axes: First reordering freedom via a bound
𝑘 (bounded reordering) and second schedule policies (FIFO,
Random, Adversarial, Batched). Additionally, we consider
fault modes (None, Reset and Timeout). To make the search
space manageable, we follow the bounding idea from system-
atic interleaving exploration (e.g., CHESS) [13]. The focus is
on a stress setting with high parallelism, in which robust and
fragile policies clearly separate. Our results show risk cliffs:
with increasing reordering freedom, certain policies exhibit
transitions into a high-tail regime, while other policies re-
main stable. Beyond aggregates, we provide curated poison
schedules as reproducible traces that are directly suitable for
deterministic replay and regression testing in driver/runtime
workflows.

Contributions.

• A protocol-close, reproducible NVMe-lite model for
analyzing schedule-induced tail latency and recovery
robustness.

1Source code, experiment harness, and plotting in https://github.com/
TheBuccaneer/fgt_nvme-robustness

https://github.com/TheBuccaneer/fgt_nvme-robustness
https://github.com/TheBuccaneer/fgt_nvme-robustness
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• A systematic robustness analysis with bounded re-
ordering as a controllable parameter and multiple
schedule policies.

• A risk-cliff presentation as well as reproducible poi-
son traces for practical diagnosis and replay.

2 Related Work

Tail latency and predictability in NVMe/Flash.: Several works
address tail latency by changing mechanisms in the host,
firmware, or interface. [17] extend NVMe with semantic
hints (latency-sensitive vs. not) to avoid catastrophic out-
liers under interrupt coalescing. [9] combine determinism
and co-design to provide predictability contracts, e.g., via de-
liberate failing and reconstructive paths. [10] reduce extreme
read tails despite writes through hardware-close techniques
(RAIL/Hot-Cold separation). In contrast, we do not propose
a new optimization, but a systematic robustness evaluation:
we treat completion reordering freedom (bound 𝑘 , policy) as
controllable parameters, measure realized reordering (𝑅𝐷),
and map risk cliffs as transitions into a high-tail regime, pro-
ducing reproducible poison schedules as regression artifacts.

Protocol-close emulation: NVMeVirt [8] provides a kernel-
based virtual NVMe device for rapid prototyping and evalu-
ation of NVMe features. Our NVMe-lite is lightweight and
deterministic. It preserves key protocol mechanisms (queues,
completions, notifications) while abstracting enough to en-
able traceable schedule exploration and deterministic replay.

Exploration and fuzzing of schedules. CHESS shows that
bounded exploration of thread interleavings (preemption
bounding) canmake rare concurrency bugs reproducible [13].
We transfer this mindset from thread schedules to host–
device completion schedules. Unlike CHESS, which varies
CPU thread orderings, we vary legal NVMe completion re-
orderings (via 𝑘/𝑅𝐷) to expose QoS degradation regimes
rather than memory-safety bugs. Complementary driver-
testing work explores rare executions via simulation and
model-guided fuzzing, e.g., PrIntFuzz [11], DevFuzz [18],
and VIRTFUZZ [6]. We align with the goal of targeting rare
behaviors, but focus on QoS robustness under completion
scheduling (including fault/recovery), and contribute poison
schedules plus risk-cliff maps for diagnosis and regression
testing.

3 Methodology

We implement a lightweight, event-driven model of a host-
device I/O protocol (NVMe-lite) that preserves central NVMe
mechanisms: submission and completion queues as ring
buffers, command identifiers (CID), as well as the phase tag
to distinguish new completion entries across queue wrap-
around. As with NVMe, completions are asynchronous and

may (legally) occur out-of-order [14]. To enable systematic
studies, we strictly separate protocol state (queues, pointers,
phase tags, pending set) and scheduler logic (selection of the
next completion/fault).
We treat the schedule as a second input dimension and

a key enabler for reproducibility. A schedule is a sequence
of discrete scheduler steps (event ticks) that trigger device
events, primarily COMPLETE for a pending command, option-
ally augmented by fault events (e.g., RESET/TIMEOUT). Each
run is uniquely labeled by the tuple (seed_id, schedule_seed,
policy, bound_k, fault_mode, scheduler_version) and is there-
fore 1:1 reproducible. We measure latencies in scheduler steps,
i.e., as the difference in ticks between SUBMIT and COMPLETE.
Ticks index the globally serialized event trace (including
SUBMIT and COMPLETE). Nondeterminism arises exclusively
from the scheduler’s choice of the next device-side event.

A central parameter is bound_k, which limits the reorder-
ing freedom of the device scheduler. In each tick, there exists
a set 𝑃 of pending commands, which we put into a canonical
order (ascending by cmd_id, so that a stable order is guar-
anteed for equal submit ticks). A scheduler with bound 𝑘
may, in the next tick, choose only an element from a 0-based
window of the canonical list:

choose index 𝑖 ∈ {0, . . . ,min(𝑘, |𝑃 | − 1)}.
Thus, 𝑘 = 0 enforces strict FIFO (only the head element
is selectable), and 𝑘 = 𝑖𝑛𝑓 allows choosing any pending
command. Note that 𝑘 = 0 eliminates reordering (RD= 0),
but policies may still differ in timing because cheduler also
controls internal device progress steps. Hence small p95
differences at 𝑘 = 0 are possible even without reordering.
The motivation follows the bounding idea from systematic
concurrency exploration: nondeterminism is parameterized
as a scalable search space [13].

Schedule policies: We consider four policies that cover or-
thogonal operating modes. (1) FIFO always selects the head
(𝑖 = 0). (2) Random selects uniformly at random from the
𝑘-window, driven by schedule_seed. (3) Batched models
coalescing by bundling up to 𝑛 completions per tick (default:
𝑛=4). (4) Adversarial approximates a worst-case firmware
scheduling.Within the permittedwindow, it prefers a late ele-
ment (e.g., maximum index) in order to keep older commands
pending as long as possible and thereby amplify backlog and
tail latency. This policy is intentionally not a security threat
model, but a robustness stress test within legal protocol de-
grees of freedom.

Adversarial robustness setting. In this schedule threat model,
we model a worst-case legal device scheduler. The device
may choose any completion order permitted by the bounded
reordering parameter 𝑘 (e. g., due to firmware heuristics, co-
alescing, or queue management), but we do not assume data
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corruption, DMA attacks, or malicious host behavior. Thus,
adversarial refers to stress-testing QoS robustness under
worst-case within-spec scheduling freedom. This distinction
is critical. Our goal is not security analysis but robustness
validation of compliant implementations.

Fault- and recovery model. To stress error handling as a
first-class aspect of schedule exploration, we evaluate fault
paths in addition to fault_mode=NONE using TIMEOUT and
RESET. Faults are modeled as explicit scheduler events (deter-
ministically derived from schedule_seed and fault_mode
or serializable as INJECT_FAULT at a fixed tick position), to
reproducibly stress recovery paths. TIMEOUT stands for per-
manently missing completions of a command. RESET resets
controller state and can discard pending work. We anchor
performance/tail statements primarily in fault_mode=NONE.
Fault modes serve the robustness analysis of error handling
and cleanup.

Experiment matrix and stress setting. Our main setting
is submit_window=inf (SW𝑖𝑛𝑓 )2 as a high-concurrency set-
tingwithmaximal overlap.We sweep𝑘 ∈ {0, 1, 2, 3, 5, 10, 𝑖𝑛𝑓 }3
across all policies, typically with schedule_seed drawn
from a fixed pool (e.g., 0-99) per cell. Smaller submit win-
dows (SW2/SW4) serve as a sensitivity study. Reduced paral-
lelism limits the size of the pending set and thus the effective
reordering freedom, so we expect the realized degree of re-
ordering 𝑅𝐷 to decrease (fewer opportunities for inversions)
and tail cliffs to be attenuated (less schedule sensitivity).

Tracing and evaluation pipeline. Each run emits a chrono-
logical log (header + events such as
SUBMIT/COMPLETE/FENCE/RESET/RUN_END and state snap-
shots). An offline pipeline parses logs into a run-level CSV
and aggregates these into a summary CSV. Plots and tables
are generated from these CSVs.

Metrics: RD, tail, and risk cliffs. Reordering Degree (RD)

measures whether the 𝑘 knob has an effect. We compute the
normalized inversion count between submit and completion
order. For 𝑛 completed commands, let inv be the number
of pairs (𝑖, 𝑗) that are 𝑖 < 𝑗 in submit order, but 𝑖 > 𝑗 in
completion order. Then

RD =
2 · inv
𝑛(𝑛 − 1) ∈ [0, 1],

and RD is thus Kendall-𝜏-like (without tie corrections in the
simplest case) [7]. We report tail latency as p95 in scheduler
steps. We operationalize risk cliffs as abrupt p95 increases

2Here, inf denotes a very large submit window that is effectively unbounded
for our workloads. It is of course not mathematically infinite, but chosen
large enough such that the host does not become the limiting factor.
3As above, inf indicates an effectively unbounded bound 𝑘 , implemented as
a sufficiently large value so that any pending command is selectable.

when incrementing 𝑘 : a risk cliff occurs if p95 between two
successive 𝑘 values rises by more than 20%. At the cell level
(Policy×𝑘×Fault) we primarily aggregate p95 means.

Poison schedules and differential validation. For practical
usability, we extract poison schedules (top-𝐾=10 runs with the
largest p95 across all Policy×𝑘×Fault combinations) and ex-
port condensed traces that can be deterministically re-played.
To reduce single-implementation artifacts, we validate se-
lected schedules differentially: identical seeds and schedules
are executed both on the Rust reference implementation and
on an independent C DUT, and normalized event sequences
are compared via diff-based comparison [3].

4 Evaluation

This section presents a combined results and discussion of our
evaluation. We study how bounded completion reordering
affects QoS robustness in NVMe-like host-device protocols.
All experiments use SWinf as the primary stress setting
unless stated otherwise.
We organize the evaluation around four research ques-

tions: (RQ1) how 𝑘 controls realized reordering (RD), (RQ2)
how tail latency evolves and when risk cliffs occur, (RQ3)
whether worst-case behavior can be captured as reproducible
poison schedules, and (RQ4) how robust these findings are
across seeds, fault modes, and differential validation.4

4.1 Caveat on Fault Modes

All QoS results (RD, p95, and risk-cliffs) are anchored to
fault_mode=NONE. Fault modes (TIMEOUT, RESET) are evalu-
ated separately to assess recovery robustness. Under faults,
run termination and resets can truncate or reshape the la-
tency distribution, so p95 values are reported for transparency
but are not directly comparable to the NONE baseline.

4.2 RQ1: Realized Reordering (RD) and

Validation of the 𝑘-Bound

Increasing the reordering bound 𝑘 should monotonically in-
crease therealized reordering (RD), while different scheduling
policies should realize this freedom to different extents.
Figure 1 reports mean realized reordering (RD) across

100 schedule seeds per cell (fault_mode=NONE, SW𝑖𝑛𝑓 ). At
𝑘 = 0, RD is zero for all policies, confirming strict FIFO
behavior. As 𝑘 increases, mean RD grows monotonically but
remains quantitatively small because most runs realize only
limited reordering on average. At𝑘 = 3, FIFO remains at RD=
0.000, Batched reaches RD≈ 0.027, Random RD≈ 0.061, and
Adversarial RD≈ 0.125. At 𝑘 = 𝑖𝑛𝑓 , mean RD saturates at

4Beyond uniform schedule-seed sampling, we also evaluated an RD-guided
sampling variant (RDSS); results and scripts are provided in the artifact
repository.
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Figure 1: Mean RD (realized reordering degree) vs.

reordering bound 𝑘 (fault_mode=NONE, SWinf), aggre-

gated over 100 schedule seeds per cell. Mean RD in-

creases monotonically with 𝑘; at 𝑘 = 𝑖𝑛𝑓 Adversar-

ial reaches RD≈ 0.218, Random RD≈ 0.098, Batched
RD≈ 0.029, while FIFO remains at zero.

RD≈ 0.218 for Adversarial, RD≈ 0.098 for Random, and
RD≈ 0.029 for Batched, while FIFO stays at zero.
These results validate the 𝑘-bound as an effective control

knob over completion reordering. Importantly, RD does not
merely track 𝑘 itself but reflects how policies exploit the al-
lowed freedom. Even under identical bounds, policies induce
qualitatively different ordering behavior, justifying the need
for systematic, policy-aware exploration rather than random
schedule sampling.
For system designers, RD provides a quantitative bridge

between specification-level freedom (“completions may re-
order”) and observable runtime behavior. Bounding reorder-
ing enables controlled stress testing without assuming patho-
logical, fully adversarial hardware behavior.

4.3 RQ2: Tail-Latency Risk Cliffs under

Completion Reordering

Our Hypothesis: Tail latency does not degrade smoothly
with increasing reordering freedom but exhibits risk cliffs:
sharp transitions into high-tail regimes once a policy-specific
threshold in 𝑘 is crossed.
Figure 2 reports p95 completion latency at 𝑘 = 𝑖𝑛𝑓 and

fault_mode=NONE. FIFO remains flat with p95≈ 13.70 steps.
Batched shows lower and stable tails (p95≈ 6.52 steps,
achieving completion-coalescing via bursts of up to four
consecutive COMPLETE steps). Random increases moderately
to p95≈ 18.25 steps. In contrast, Adversarial jumps to
p95≈ 28.46 steps (~2× the FIFO baseline).
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Figure 2: p95 completion latency (scheduler steps) by

policy at 𝑘 = 𝑖𝑛𝑓 (fault_mode=NONE). Error bars show

standard deviation across 100 schedule seeds per policy.

Adversarial exhibits highest tail latency ( 28.46 steps).

Batched achieves lowest ( 6.52 steps). FIFO and Random

intermediate.
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Figure 3: Risk-cliff heatmap: mean p95 latency

(scheduler steps) over policy × reordering bound 𝑘

(fault_mode=NONE). Adversarial exhibits a sharp jump

at 𝑘 = 2 → 3. Random shows gradual increase. Batched

remains stable. FIFO is flat (unaffected by 𝑘).

Risk-Cliff Heatmap. While Figure 2 reports the 𝑘 = 𝑖𝑛𝑓

slice, Figure 3 shows how tail latency evolves across the
full 𝑘 spectrum. Figure 3 visualizes mean p95 latency (mea-
sured in scheduler steps. Values are the mean of per-run
p95 latencies) across all policies and reordering bounds 𝑘 ∈
{0, 1, 2, 3, 5, 10, 𝑖𝑛𝑓 }.
Sharp Cliff (Adversarial): p95 remains low at 𝑘 = 0

(13.70 steps) and 𝑘 = 1 (13.11 steps), but jumps abruptly at
𝑘 = 2 → 𝑘 = 3 from 14.46 to 20.95 steps (+45%). For 𝑘 ≥ 5,
p95 saturates at 28.46 steps. This sharp transition confirms
our hypothesis: once 𝑘 ≥ 3, the adversarial policy’s newest-
first heuristic has enough freedom to systematically delay
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older commands, triggering head-of-line blocking and severe
tail-latency amplification.
Gradual Cliff (Random): Random exhibits continuous

degradation from 12.89 (k=0) to 18.25 steps (k=𝑖𝑛𝑓 , +42%).
The absence of a sharp jump reflects unbiased selection:
each increment in 𝑘 marginally increases the probability of
delaying older commands, but no single threshold triggers
catastrophic behavior.
Robust (Batched): Batched remains stable across all 𝑘 :

5.87–6.53 steps (< 11% variation). This robustness arises be-
cause completion coalescing (bursting up to four consecutive
completions once the first completion is triggered) creates a
regular pattern that dampens the effect of reordering free-
dom.
Baseline (FIFO): FIFO shows no variation (13.70 steps)

because only the head element is selectable; the 𝑘-bound has
no effect. We call a transition a risk cliff when mean p95 in-
creases by more than 20% between adjacent 𝑘 values (sharp)
rather than changing gradually. These results demonstrate
that QoS degradation follows a non-linear, policy-dependent
trajectory. The sharp cliff for Adversarial is particularly strik-
ing. A single increment from𝑘 = 2 to𝑘 = 3 (moving from 2 to
3 selectable commands) precipitates a 45% latency jump. This
behavior invalidates linear assumptions and underscores the
need for systematic, bounded exploration rather than con-
servative assume-worst-case designs.
For NVMe firmware and host-stack developers, risk cliffs rep-
resent a critical failure mode. A device implementation that
is demonstrably robust at 𝑘 = 2 may violate strict tail-latency
budgets at 𝑘 = 3, even though both bounds are legal under
the NVMe specification. This finding motivates the extrac-
tion of poison schedules (RQ3) as concrete regression-test
artifacts that developers can integrate into CI/CD pipelines.

Mechanism: pending pressure to head-of-line blocking. To
explain why the risk cliff emerges, we inspect queue back-
pressure via the pending set. In SW𝑖𝑛𝑓 , Adversarial system-
atically delays older commands while completing younger
ones within the allowed 𝑘-window. This increases the life-
time of long-running commands in the pending set and cre-
ates a sustained backlog. Concretely, for fault_mode=NONE
the mean p95 under Adversarial increases from 14.46 steps
at 𝑘 = 2 to 20.95 at 𝑘 = 3 and 28.46 at 𝑘 ≥ 5, while RD simul-
taneously rises (Section 4.2). Once 𝑘 becomes large enough
for the scheduler to repeatedly skip over stalled/old requests,
the system enters a high-tail state where the pending set
acts as a reservoir for tail amplification. A small fraction
of commands is delayed across many ticks and eventually
dominates the p95. In contrast, Batched keeps tails low even
at 𝑘 = 𝑖𝑛𝑓 (mean p95=6.52) because completion coalescing
reduces host-visible head-of-line exposure and limits the fre-
quency at which single delayed requests can dominate the

Table 1: Poison schedules (seed1, SW𝑖𝑛𝑓 ,

fault_mode=NONE, 𝑘 = 𝑖𝑛𝑓 ). Top-10 runs ranked by

p95 latency. RD values joined from run-level results.

All belong to Adversarial policy.

Rank schedule_seed p95 (steps) RD

1 10 64 0.383
2 18 64 0.524
3 53 64 0.722
4 26 62 0.395
5 30 62 0.373
6 59 62 0.444
7 76 62 0.462
8 98 62 0.549
9 27 60 0.475
10 62 60 0.470

tail. Overall, the cliff is therefore best understood as a back-
pressure transition. Once the scheduler has enough freedom
to perpetually defer some older commands, pending pressure
and head-of-line effects amplify into a high-tail regime.

Submit-window ablation (SW2/SW4): Limiting the number
of in-flight commands caps the pending-set size, so realized
reordering and tail impact saturate once 𝑘 exceeds the typi-
cal pending depth. Accordingly, the risk-cliff boundary shifts
with workload pressure: under lower concurrency the tran-
sition into the high-tail regime occurs at smaller effective 𝑘
(or becomes less pronounced), whereas under SW𝑖𝑛𝑓 poli-
cies can sustain a large pending reservoir and amplify tails.
Practically, 𝑘 should be interpreted relative to the typical
pending depth, not as an absolute “safe” bound.

4.4 RQ3: Poison Schedules as Practical

Robustness Artifacts

Worst-case schedules are highly structured and reproducible,
making them valuable artifacts beyond aggregate statistics.

Table 1 lists the top-10 poison schedules at 𝑘 = 𝑖𝑛𝑓 un-
der fault_mode=NONE, ranked by p95 completion latency.
All ten schedules are produced by the Adversarial policy.
The strongest poison schedule (schedule_seed=10) reaches
a p95 latency of 64 scheduler steps with RD = 0.383, com-
pared to the FIFO baseline mean p95 of 13.70 steps (Sec-
tion 4.3). Even the weakest poison schedule in the top-10
(schedule_seed=62) still exceeds p95=60 steps, demonstrat-
ing that extreme tail behavior is systematically triggerable
and not a rare outlier.
These schedules are not rare outliers but represent a dis-

tinct class of execution patterns that consistently trigger
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Table 2: Generality check: mean p95

(fault_mode=NONE) for seed1 vs seed2 across 𝑘

(SW𝑖𝑛𝑓 ).

Seed Policy 𝑘=0 1 2 3 5 10 𝑖𝑛𝑓

seed1 FIFO 13.70 13.70 13.70 13.70 13.70 13.70 13.70
seed1 Random 12.89 13.48 14.62 15.85 16.69 18.28 18.25
seed1 Batched 5.87 6.09 6.21 6.41 6.53 6.52 6.52
seed1 Adversarial 13.70 13.11 14.46 20.95 28.46 28.46 28.46

seed2 FIFO 4.84 4.84 4.84 4.84 4.84 4.84 4.84
seed2 Random 4.94 5.04 5.38 5.47 5.69 5.68 5.68
seed2 Batched 3.66 3.72 3.97 4.00 4.00 4.00 4.00
seed2 Adversarial 4.84 4.19 6.41 6.48 6.48 6.48 6.48

worst-case behavior. Their compact trace representation al-
lows deterministic replay, enabling regression testing and
targeted debugging of host-side logic.
Impact of our discussion: poison schedules turn robustness
analysis into a practical engineering tool: instead of reason-
ing abstractly about bad schedules, developers can replay
concrete traces that reliably expose tail-latency pathologies.

4.5 RQ4: Generality and Robustness of

Findings

Seed Generality: A second workload seed (seed2, 𝑛cmds ≈ 8
commands vs. seed1’s 32, Table 2) confirms that the qual-
itative phenomena are robust: all policies maintain their
ranking (Batched lowest latency, FIFO close second, Adver-
sarial highest), and the transition into a higher-tail regime
remains visible but shifts to lower 𝑘 (seed2 Adversarial: jump
at 𝑘 = 1 → 2 vs. seed1’s 𝑘 = 2 → 3). This shift reflects
workload-induced pending pressure. Smaller workloads have
less queue depth and thus reach the high-tail regime at lower
reordering bounds. Absolute p95 values differ across seeds
(consistent with different workload sizes and pending pres-
sure), while the qualitative ordering and the presence/posi-
tion of transition regimes remain stable.

Fault Modes: Table 3 reports mean p95 latency at 𝑘 = 𝑖𝑛𝑓

(seed1, SW𝑖𝑛𝑓 ) under different fault modes. Under NONE, all
runs complete the full workload (completion_rate= 1.0,
𝑛ok = 32), so p95 reflects genuine schedule-induced tail am-
plification. Under TIMEOUT, runs terminate early (median
𝑛ok ≈ 19–20, completion_rate≈ 0.59–0.63), which trun-
cates the completion tail and thus reduces measured p95
even for adversarial schedules. Under RESET, the model de-
terministically resolves the run after exactly half of the com-
mands (𝑛ok = 16, completion_rate= 0.5 across all policies),
effectively capping backlog growth. Consequently, policy
differences in tail latency are largely suppressed. Therefore,
we interpret p95 primarily under NONE as a QoS metric, while

Table 3: Fault modes at 𝑘 = 𝑖𝑛𝑓 : mean p95 latency

(SW𝑖𝑛𝑓 , seed1). Note: TIMEOUT/RESET truncate runs

(reduced completion rate), which affects tail measure-

ments.

Fault mode FIFO Random Batched Adversarial

NONE 13.70 18.25 6.52 28.46
TIMEOUT 12.08 16.22 6.36 24.71
RESET 11.28 12.05 5.82 9.52

TIMEOUT/RESET are reported as robustness/recovery behav-
ior.

C-DUT Validation: To reduce single-implementation arti-
facts, we differentially validate a targeted subset of execu-
tions against an independent C implementation. Concretely,
we replay the Top-𝐾 poison schedules (Table 1) and a small
set of representative (policy, 𝑘 , fault_mode) cells. Across this
checked subset we observe no semantic mismatches, increas-
ing confidence that the reported phenomena are not artifacts
of a single implementation.

4.6 Limitations

NVMe-lite is a deterministic, logical model and does not
predict microsecond-level performance. SWinf represents
a stress scenario rather than typical deployment, and the
evaluated workload size is fixed at 𝑛cmds = 32 commands
in the main experiment matrix. Nevertheless, these choices
intentionally isolate schedule-induced effects, making the
observed risk cliffs attributable to completion reordering
rather than confounding hardware variability.

5 Conclusion

This paper systematically explores NVMe-lite host–device
completion-schedule robustness via bounded reordering. We
uncover sharp risk-cliffs in tail latency: at 𝑘 = 3, Adversarial
reaches ≈ 1.5× FIFO p95; at 𝑘 ≥ 5, ≈ 2×. We extract poison
schedules as regression-test artifacts and demonstrate that
recovery mechanisms dominate schedule effects under faults.
Key contributions: (1) systematic completion-schedule ro-
bustness exploration, (2) risk-cliff quantification, (3) poison
schedules as practical evaluation artifacts.

Future Work

Extensions include empirical validation on real NVMe hard-
ware with work-constraining schedulers [12], and extending
NVMe-lite with host thread models to study OS scheduling
interaction with device-side completion reordering. Further
directions include CI/CD integration of poison schedules [4]
and automated risk-cliff detection [2].
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