
Towards Task-Based Scheduling
on Truly Heterogeneous Systems
Birte Friesel

birte.friesel@uos.de
Universität Osnabrück
Osnabrück, Germany

Marcel Lütke Dreimann
marcel.luetkedreimann@uos.de

Universität Osnabrück
Osnabrück, Germany

Mario Porrmann
mario.porrmann@uos.de
Universität Osnabrück
Osnabrück, Germany

Olaf Spinczyk
olaf@uos.de

Universität Osnabrück
Osnabrück, Germany

Abstract
In the past decade, technologies such as non-volatile memory
(NVM), high-bandwidth memory (HBM), compute express
link (CXL), and near-memory computing (NMC) have dis-
rupted established task and data placement heuristics. Con-
ventional abstractions such as the memory hierarchy are no
longer valid: for instance, using HBM as cache for DDR RAM
can slow down workloads [8, 12]. Task-based scheduling al-
gorithms aim to resolve this by decomposing workloads into
non-preemptible work units (tasks) and minimizing work-
load execution time (makespan) by appropriate placement
of tasks and data objects. However, their applicability to
systems with novel, disruptive memory technologies such
as HBM, CXL, or NMC depends on the underlying task and
platformmodel. By examining themodels used within hetero-
geneous task-based scheduling algorithms published in the
past two decades, we find that they have remained largely
unchanged over the past 25 years, and are inappropriate
for today’s level of heterogeneity in compute and memory
components. Based upon this, and related work that offers
at least partial improvements, we identify gaps in existing
models, showcase examples to underline their relevance, and
present ideas to remedy some of those. Our goal is not to give
answers for all open questions, but rather to provide point-
ers towards appropriate abstractions for future, operating
system-centric, task-based scheduling research.

Keywords
Scheduling Algorithms, Heterogeneous Systems, Platform
Models, Task Models

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0
International License. DOI: https://dx.doi.org/10.1145.nnnnn. GI/ITG FG
Operating Systems, February 2026, Düsseldorf, DE.

1 Introduction
Task-based scheduling is the process of assigning task-based
workloads to compute resources in setups such as chiplets,
multi-core servers, data centres, or federated clouds [1, 6, 23].
Each workload is defined as a directed acyclic graph (DAG),
wherein each node expresses a single (non-preemptible) task,
and each edge expresses a data dependency between a pair
of tasks. Typically, the goal is to minimize the makespan: the
latency from the start of the DAG’s first task to the successful
execution of its last one.
Makespan-optimal scheduling of task graphs is an NP-

complete problem already in the homogeneous case, where
task latency is independent of task placement [2, 24]. Hence,
for the past decades, researchers have looked into heuris-
tics instead, and used empirical evaluations on mixtures of
synthetic and real-world, scientific workloads to assess their
quality. While these heuristics have steadily improved over
the past 25 years [23, 25], and researchers have also exam-
ined additional optimization goals such as energy and cost
[17, 19, 30], the task and platform models they build upon
have remained largely unchanged.

This paper examines whether those models still align with
the realities of today’s highly heterogeneous hardware, and
provides suggestions for extended task and platform models
so that scheduling research remains applicable to real-world
data processing environments. In essence, it is a combination
of mini-survey and vision paper, partially augmented with
proof-of-concept implementations and evaluations.

In the next section, we present the task and platformmodel
that the majority of task-based scheduling research has built
upon for the past 25 years. We then review publications
on task-based scheduling on heterogeneous systems, with
a focus on model use cases and extensions, in Section 3.
Following up, Section 4 presents our own assessment of the
accuracy and practical viability of their level of abstraction,
and gives suggestions for evolving task and platform models

https://orcid.org/0000-0002-0688-9440
https://orcid.org/0009-0007-2426-4798
https://orcid.org/0000-0003-1005-5753
https://orcid.org/0000-0001-9469-2367
https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0
https://dx.doi.org/10.1145.nnnnn


Birte Friesel, Marcel Lütke Dreimann, Mario Porrmann, and Olaf Spinczyk

Memory …

Memory 1

Memory n

Compute …

Compute 1

Compute n

Task: data transfer execution (local data)

· · · ↑ …ns; …GiB/s
↓ …ns; …GiB/s· · ·

Figure 1: Platform model and task execution phases in
HEFT.

to deal with the constraints and peculiarities imposed by
real-world hardware components. We underline some of our
proposed changes with a case study on a SELECT database
kernel in Section 5, and conclude in Section 6.

2 Task and Platform Model
The Heterogeneous Earliest Finish Time (HEFT ) algorithm has
served as a baseline for task-based scheduling on heteroge-
neous systems for the past 25 years [23], and, as of 2024, is
still considered as state of the art [3]. As almost all publica-
tions that we reviewed build upon it, we now present its task
and platform model in order to have a common foundation
for discussing limitations and extensions.

On the hardware side, HEFT focuses on systems that con-
sist of multiple, heterogeneous compute units. These com-
pute units can be anything from CPU cores in a single ma-
chine to servers in a networked compute cluster. Crucially,
they are heterogeneous: task latency is a function of task
placement, and algorithms must not just find a suitable order
of tasks, but also place them on appropriate compute units
while taking data transfer overhead into account.

Each compute unit is associated with a single, local mem-
ory with unlimited capacity; tasks running on it cannot ac-
cess memory on other units. If a pair of dependent tasks
𝑣1 → 𝑣2 is scheduled on different units 𝑐1, 𝑐2, the system
runtime must transfer output data of 𝑣1 from 𝑐1 to 𝑐2 so that
it can be used as input data for 𝑣2.

HEFT assumes that these data transfers occur concurrently
with task execution and without contention; data transfer
duration is a function of data size as well as data transfer
latency and throughput. This results in the following plat-
form and task models; platform model and task concept are
additionally visualized in Fig. 1.

Definition 2.1 (HEFT Platform Model [23]). A platform is a
tuple M = (𝐶, 𝐿, 𝐵), consisting of compute units 𝐶 , commu-
nication startup latencies 𝐿 : 𝐶 → R≥0, and communication
bandwidths 𝐵 : 𝐶2 → R≥0.

Definition 2.2 (HEFT Task Model [23]). A workload is a
directed acyclic graph (DAG) T = (𝑉 , 𝐸,𝑊 , 𝐷). It consists
of tasks (nodes) 𝑉 , data dependencies (edges) 𝐸 ⊂ 𝑉 2, task

latencies (weights) 𝑊 : 𝑉 × 𝐶 → R≥0, and annotations
𝐷 : 𝐸 → N≥0 that identify the amount of exchanged data.

Running task 𝑣 ∈ 𝑉 on node 𝑐 ∈ 𝐶 takes𝑊 (𝑣, 𝑐) time units
(e.g., seconds). For each dependency (𝑣1, 𝑣2) ∈ 𝐸, 𝐷 (𝑣1, 𝑣2)
describes the amount of data that is transferred from task
𝑣1 to task 𝑣2 in an arbitrary, but fixed, unit (e.g., Bytes or
blocks). In practice,𝑊 and 𝐷 are often implemented as two-
dimensional matrices.

Communication startup latencies are specific to the node
holding the requested data. So, with task 𝑣1 scheduled on
compute unit 𝑐1, and task 𝑣2 scheduled on unit 𝑐2 ≠ 𝑐1, trans-
ferring𝐷 (𝑣1, 𝑣2) units of data takes 𝐿(𝑐1)+ 𝐷 (𝑣1,𝑣2 )

𝐵 (𝑐1,𝑐2 ) time units
(e.g., seconds). If 𝑐1 = 𝑐2, data is already available and thus
there is no data transfer overhead.

These models can be applied to many real-world systems,
including CPU cores in a multi-core or multi-socket server
with non-uniform memory architecture (NUMA). Although
those typically share a single memory region with multiple
compute units, this can be expressed by discarding startup
latency (𝐿(𝑐) = 0 for all 𝑐 ∈ 𝐶) and setting 𝐵(𝑐1, 𝑐2) =∞ for
any pair 𝑐1, 𝑐2 of cores that share the same NUMA node.
Note that HEFT and all other algorithms and models ex-

amined in this paper assume that the entire task graph is
provided in advance. All tasks, task execution times, and
data dependencies (including the amount of data transferred
between task pairs) are deterministic and known before-
hand. As such, we only consider offline algorithms that pre-
compute the entire schedule. We also specifically focus on
task-based scheduling for individual servers that are outfitted
with multiple different compute and memory technologies,
e.g., CPU, GPU, DDR RAM, HBM, and NMC.

3 Related Work
HEFT has been proposed nearly 25 years ago and is still
widely used as a baseline for comparison and improvement.
As of January 2026, Google Scholar lists more than 4,500
citations for the original publication by Topcuoglu et al. [23].
Hence, for our review of follow-up developments, we com-
bined a keyword-based literature review with a review of
pubilcations that cite the original HEFT algorithm, focusing
on task-based scheduling for heterogeneous or disaggregated
compute and memory systems. We note that, in line with
the scope of this paper, this merely serves as a mini-survey
to gain a sense of research directions – we did not perform a
structured literature review.

Overall, we found four clusters of publications:
(1) algorithm improvements with identical or nearly un-

changed task and platform model,
(2) additional optimization goals (e.g., energy usage),
(3) adjustments towards specialized use cases, partially

with simplified models, and



Towards Task-Based Scheduling on Truly Heterogeneous Systems

(4) approaches that are incompatible with task graphs.

In addition to the application domains listed in the previ-
ous section, we observed a focus on cloud computing and
multi-cloud federation (cost optimization) as well as edge
and fog computing (energy usage optimization).

The first cluster covers improvements such as Lotaru [3],
PEFT (predict earliest finish time) [2], IPPTS (improved pre-
dict priority task scheduling) [10], READYS [14], and AEFT
(average earliest finish time) [25]. All of these, and many
more [1, 16, 18], leave the underlying task and hardware
model unchanged. Two decades after HEFT’s publication,
Lotaru still references it as state of the art [3].
MPQGA uses a slightly more fine-granular model [29]. It

splits task latency𝑊 into two components: amount of com-
putation per task (𝑊 ′ : 𝑉 → R≥0, independent of placement)
and task-specific computing speed (𝑊 ′′ : 𝑉 × 𝐶 → R≥0).
This way, it retains compatibility with HEFT and others:
𝑊 (𝑣, 𝑐) = 𝑊 ′ (𝑣)

𝑊 ′′ (𝑣,𝑐 ) for all 𝑣 ∈ 𝑉 , 𝑐 ∈ 𝐶 .
The second cluster focuses on energy and cost optimiza-

tion or constraints, often in addition to low latency.
For instance, Chen et al. aim tominimize schedulemakespan

on homogeneous compute units with dynamic voltage and
frequency scaling (DVFS) support under energy constraints
[7]. They first simplify the model so that each task is asso-
ciated with a worst-case execution time (WCET)𝑊 ′ : 𝑉 →
R≥0 that is independent of task placement, and that data
transfer latency is only a function of size and bandwidth:
𝐷 (𝑣1,𝑣2 )
𝐵 (𝑐1,𝑐2 ) , with no communication startup latency. Each com-
pute unit 𝑐 supports different DVFS levels 𝑠𝑞,1, . . . , 𝑠𝑞,𝑘 that
affect task latency and power usage, and both in turn deter-
mine the task’s energy usage. Again, task latency remains
compatible:𝑊 (𝑣, 𝑐) = 𝑊 ′ (𝑣)

𝑠𝑐,𝑖
for task 𝑣 , compute unit 𝑐 , and

DVFS level 𝑖 .
Zhang et al. also consider DVFS and DVFS-specific power

usage as part of task and platform model, and additionally
introduce the transient fault probability of individual com-
pute units. With this, their goal is to minimize both energy
usage and probability of failure [30].

Meanwhile, Jayanetti and Buyya aim to optimize the cost
of workload execution in a cloud setting. Their contribution
to the model is a placement-specific task cost in addition to
the already-present placement-specific task latency [19].
Panda and Jana tackle concurrent scheduling of multiple

workloads (i.e., multiple DAGs) in a multi-cloud setting, but
with a limited model [22]. Here, tasks only have execution
dependencies; data transfers and associated latencies are
assumed to be negligible and thus left out.

Wang et al. consider task sets with non-deterministic com-
ponents in an industrial internet of things (IIoT) setting [26].
They define a conditional task graph (CTG), wherein certain
tasks may or may not be executed. For instance, if an earlier

task has not identified any anomalies, its follow-up task(s) for
anomaly analysis will not be executed. Task latency remains
unchanged (i.e., deterministic), and data transfer bandwidth
is simplified to be symmetric.
Altogether, most model changes we found focus on ex-

tensions towards additional optimization goals. Crucially,
they leave the underlying architectural assumptions (mesh
topology; one memory per compute unit) as-is [17, 28].

Moving on to the third cluster, Bathie et al. present one of
very few approaches that considers memory constraints [4].
However, it is limited to a single, shared memory, making
it ill-suited for practical applications such as NUMA, HBM,
GPUs, or NMC.

Benoit et al. present aHEFT extension for servers equipped
with DRAM and HBM that is both more and less flexible than
the original HEFT models [5]. On the one hand, they explic-
itly consider a system with two different memories: high
capacity, low bandwidth (e.g., DDR RAM) and low capacity,
high bandwidth (e.g., HBM), and place each block of data
individually. This is much finer than HEFT, which always
places entire data objects of size 𝐷 (𝑣1, 𝑣2). Moreover, they
no longer assume that each compute unit has a single local
memory: applications can access both memories, data may
be freely distributed across them, and the algorithm takes
contention from concurrent data accesses into account.

On the other hand, they strongly simplify the compute and
memory model: there are just two memory regions (DDR
RAM and HBM), and all compute units can access these
with the same region-specific latency and bandwidth. Again,
NUMA and components with dedicated memory (such as
GPUs or NMC) are not supported.
Finally, especially when it comes to HBM-related place-

ment algorithms, many approaches use models that are not
compatible with DAG task sets and corresponding platform
models. Examples for this fourth cluster include channel arbi-
tration optimization or the placement of individual memory
allocations, which do not take tasks into account [8, 9, 20].

Overall, we find that, nearly 25 years later, the underlying
model of the HEFT algorithm is still in wide-spread use
for offline scheduling of task sets on chiplets, CPUs, GPUs,
computer networks, clouds, and more [6, 14, 19, 23].

4 Limitations and Recommendations
While this model is suitable for systems from 25 years ago,
hardware has evolved dramatically since then. Nowadays,
specialized accelerators such as GPUs, FPGAs or NMC de-
vices require time-intensive setup or reconfiguration before
they can execute a task [11, 21]. At the same time, compute
andmemory resources are no longer synonymous: a compute
unit may have two “local” memories (e.g., DDR RAM and
HBM), and memory regions may come without associated



Birte Friesel, Marcel Lütke Dreimann, Mario Porrmann, and Olaf Spinczyk

compute units (e.g., CXL-attached DRAM). Applications may
also benefit from directly accessing data on remote memory
rather than waiting for it to be copied to local memory [12].

None of these developments can be expressed with the tra-
ditional task and platform model used by HEFT and dozens
of related algorithms, where each compute unit is associated
with a single memory and tasks always work on local data.
In the following subsections, we will discuss these limita-
tions in detail, and present ways of addressing them. We will
cover three aspects: task definition, setup / reconfiguration
of accelerators, and data transfer.

4.1 Task Definition
At HEFT’s inception, heterogeneity typically referred to pro-
cessors with different performance levels. Tasks could run
faster on certain cores (or servers) than on others, but the
concept of a task itself was well-defined. Today, heteroge-
neous systems combine FPGAs, GPUs, or NMC accelerators,
where a uniform definition of a task no longer applies. Not
only are the processed instructions different, but the Flynn
classification and the amount of work represented by a task
differ as well. CPU cores typically process one (or few) data
points per instruction (SISD), while a GPU-enabled applica-
tion function can process thousands at the same time (SIMD).

Due to this, the required granularity of tasks (and, thus, the
workload’s DAG itself) depends on the targeted accelerator.
While large workloads are usually distributed across multiple
CPU cores and thus correspond to multiple tasks, only one
task is required for the GPU. Furthermore, individual tasks
may only support a subset of available compute units, for
instance due to accelerator-specific restrictions or missing
implementations for non-CPU execution.

Wu et al. offer a way to solve parts of this dilemma, where
the placement of individual tasks affects the structure of the
DAG but can, in turn, only be determined once the entire
DAG is known. They propose hierarchical DAGs, wherein
individual tasks may reference CPU-specific sub-DAGs [27].
Thus, parts of a workload can either be distributed across
multiple CPU cores or make use of a single GPU. We propose
to also allow sub-DAGs for accelerators. This way, sched-
uling algorithms know the entire DAG in advance, but can
still respect accelerator-specific task structures. Additionally,
references to empty sub-DAGs can indicate that the corre-
sponding compute units are not supported by a task. This
approach brings even more advantages, which we will revisit
in the following subsections.

4.2 Setup and Reconfiguration
Non-CPU compute units, such as GPUs or NMC devices,
must be initialized before they can be used. This typically

involves software framework initialization, resource alloca-
tion, and upload of the task’s machine code. This process
can take dozens to hundreds of milliseconds [13], and may
even require more time than the task itself [21]. In addition,
initialization must typically be handled by a CPU core, which
is unavailable for other tasks during this time.
A simple solution based on the hierarchical DAGs from

Section 4.1 is the explicit representation of this phase as a
task in the accelerator-specific sub-DAG. Section 5 presents
an example for this. This approach not only allows setup
costs to be taken into account at all, but also enables the
scheduler to place setup tasks on appropriate compute units,
thus blocking them for other tasks during the setup phase.
Moreover, the latency of a setup task can depend both on
the accelerator chosen for the main task and the placement
of the setup task, closely resembling real-world behaviour.

4.3 Data Transfer
Another oversimplification in the HEFT model can be found
in data transfer: no system has unlimited memory capacity.
When tasks are scheduled on an accelerator with limited local
memory capacity, they may not have enough space to store
all required data objects, causing the resulting schedule to be
infeasible in practice. Additionally, HEFT’s model assumes a
fully-connected mesh between compute units and associated
memories. While this is valid when viewing modern acceler-
ators in isolation (e.g., data can be transferred to/from GPU
memory both via DDR RAM and HBM), multi-accelerator
systems violate this assumption. For instance, there is no
direct connection between an FPGA’s on-board memory and
a GPU’s dedicated memory – data must be transferred via
main memory (e.g., DDR RAM or HBM).
Moreover, HEFT’s assumption that data is moved in the

background (without an explicit copy task running on a CPU
core) is only valid for compute units with DMA support. This
is not generally the case – for instance, NMC as implemented
in UPMEM’s “PIM” memory relies on a CPU thread pool to
handle data transfers [15]. Finally, other types of compute
units do not have any dedicated memory and instead share
memory with CPU cores (e.g., integrated GPUs).

4.4 Proposal
Naturally, increasing the task and platform models’ level of
detail will also increase the complexity of associated schedul-
ing algorithms – the ideal level of abstraction that achieves
a suitable compromise between algorithmic complexity and
model accuracy will have to be determined empirically. How-
ever, our own experience indicates that the original HEFT
model can be improved at least to some extent without sac-
rificing scheduling performance [21].



Towards Task-Based Scheduling on Truly Heterogeneous Systems

Memory 1 Memory …

Memory … Memory m

Compute 1

Compute …

Compute …

Compute n

Task: setup data transfer execution

Figure 2: An extended task and platform model exam-
ple with heterogeneous, partially-connected compute
(here: CPU / NMC /GPU) andmemory (here: DDRRAM
/ NMC / HBM).

FILTER/COMPRESS

INIT

PRINT

CPU

CPU GPU NMC

CPU

Figure 3: Coarse-grained DAG for SEL, excluding data
transfer annotations. The filter/compress task can be
executed either on the CPU, a GPU, or an NMC device.

That being said, we suggest to extend HEFT’s models as
shown in Fig. 2: compute units andmemory pools are distinct
entities, and each compute unit may have access to multi-
ple memory pools (solid lines). Dashed lines indicate data
transfer possibilities between memory pools, using either a
CPU-bound data transfer task or DMA. Each memory pool
is annotated with a capacity, and all links are annotated with
the usual latency and bandwidth figures.

For the task model, it is also advantageous to specify a set
of data objects rather than just a single data transfer size [21].
This allows applications such as PrIM TRNS, where many
small memory transfers occur and communication startup
latency 𝐵 is the main cause of overall execution latency, to
be presented accurately [15].

We deliberately do not give a formal definition of our pro-
posed model extension – as stated above, further empirical
research is needed to determine whether this concrete pro-
posal is viable. Instead, we will now examine a case study to
show the benefits of some of these extensions.

CPU GPU NMC

FILTER/
COMPRESS

F

S S

Figure 4: Sub-DAGs for SEL’s filter/compress task. Node
colour refers to the supported compute unit (CPU /
GPU / NMC). “S” refers to setup tasks, and “F” to follow-
up tasks.

5 Example: PrIM SEL
We use PrIM SEL to showcase the benefits of an extended
task and platform model. It is part of the ”Processing In
Memory“ benchmark suite [15], and provides CPU, GPU,
and NMC (UPMEM PIM) implementations of a select kernel
that returns all data objects matching a certain attribute.

5.1 Task Model
In the conventional model, SEL consists of three sequen-
tial tasks: initialization, filter / compression (i.e., the select
kernel itself), and output of the results. Fig. 3 shows the
corresponding DAG task graph.

However, the CPU, GPU, and NMC implementations of the
filter / compression task exhibit very different computation
and communication patterns. SEL’s CPU implementation
uses a simple, fork-join style, multi-threaded workload parti-
tioning scheme. Meanwhile, GPU and NMC implementation
require a CPU task to run setup code before actual GPU /
NMC execution can take place. The GPU variant then uses
two distinct sub-kernels on the GPU, whereas the NMC im-
plementation consists of a single NMC kernel and a CPU task
that post-processes the data provided by the NMC kernel.

Fig. 4 shows how these differences can be represented with
hierarchical DAGs. The filter/compress task points to a sub-
DAG for each supported compute unit, and the sub-DAGs
describe the computation and communication patterns in
detail. They also encode the fact that the GPU and NMC



Birte Friesel, Marcel Lütke Dreimann, Mario Porrmann, and Olaf Spinczyk

0 1 2 3 4 5 6
us 1e7

CPU

UPMEM

Figure 5: Time to completion for PrIM SEL with 2500
NMC processors (top) and 16 CPU cores (bottom).

variants do not exclusively run on the GPU or NMC device,
but require CPU-only setup and (in case of NMC) follow-up
tasks. This is crucial for obtaining realistic schedules.

5.2 Hardware Model
Our evaluation platform consists of two Intel Xeon Silver
4215 CPUs, each with 8 cores (16 threads) and 64GiB of
DDR4 memory. Additionally, it is equipped with 20 UPMEM
PIM modules, providing 160GiB of memory with a total of
2,560 NMC compute units. The system has two NUMA nodes
(one per socket); NMC compute units can only access their
associated partition of UPMEM PIM memory.

We used a tool bundled with our HetSim scheduling simu-
lator to generate the hardware model [21], and augmented it
with microbenchmarks to determine the latency and band-
width between NUMA regions and to/from NMC memory
[12]. The structure of the model corresponds to our proposal
shown in Fig. 2.

5.3 Example Schedule
When using HEFT with the conventional model as shown in
Fig. 3, HEFT decides to run the filter/compress task on NMC.
From HEFT’s perspective, this is the right choice: thanks to
the massive parallelism provided by NMC, both modelled
and actual task latency for NMC are more than an order of
magnitude lower than, e.g., for CPU execution [11, 15].
However, when running the task set on actual hardware,

and taking the total execution time from start to finish into
account, Fig. 5 shows that the CPU variant is actually slightly
faster. This is due to the NMC-specific setup and follow-up
task, whose combined latency thwarts the speedup gained by
NMC’s massively parallel execution. HEFT’s model does not
support this kind of compute unit-specific setup or follow-up
latency, and hence HEFT did not consider it. Our proposal,
in contrast, can represent these latencies and thus enable
better scheduling decisions.

6 Conclusion
We have examined models for task-based scheduling on truly
heterogeneous systems, where workloads are expressed as di-
rected acyclic graphs (DAGs) of individual, non-preemptible
work units (tasks).

Our review of related work has shown that the majority
of publications in this field have built upon the task and plat-
form models that were first proposed nearly 25 years ago as
part of the HEFT scheduling algorithm [23]. Considering the
complexity and diversity of today’s hardware, these models
are no longer suitable for task-based scheduling on indi-
vidual servers. For instance, GPUs, FPGAs or NMC devices
require CPU-bound setup tasks before they can be used, and
data transfer between tasks is not as simple as the original
model implies. Moreover, the DAG’s structure itself depends
on where individual tasks will be scheduled.

Following up, we have provided suggestions for improving
the task and platform models to be in line with the reality of
today’s hardware, while retaining a level of abstraction that
is suitable for task-based scheduling algorithms. These stem
partially from related work, such as hierarchical DAGs [27],
and partially from our own experiencewith task-based sched-
uling on heterogeneous systems [12, 21]. Combined with the
SEL example given in the previous section, these show that
more fine-grained models, such as the one proposed in Fig. 2
can enable more accurate scheduling decisions.
Naturally, this is only a proposal, and we are far from

having examined all of its ramifications for latency predic-
tion accuracy and scheduling algorithm complexity. After
all, each abstraction (here: each task and platform model) is a
compromise between these two aspects. Still, in our opinion,
it is past due for an update to HEFT’s decades-old task and
platform models so that they can more accurately represent
the reality of today’s server hardware. In the end, a suit-
able level of abstraction, and how closely it aligns with our
proposal, will have to be determined empirically.

Acknowledgments
This work has been funded by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) – 502565817.

References
[1] DI George Amalarethinam and A Maria Josphin. 2015. Dynamic task

scheduling methods in heterogeneous systems: a survey. International
Journal of Computer Applications 110, 6 (2015), 12–18.

[2] Hamid Arabnejad and Jorge G. Barbosa. 2014. List Scheduling Algo-
rithm for Heterogeneous Systems by an Optimistic Cost Table. IEEE
Transactions on Parallel and Distributed Systems 25, 3 (2014), 682–694.
doi:10.1109/TPDS.2013.57

[3] Jonathan Bader, Fabian Lehmann, Lauritz Thamsen, Ulf Leser, and
Odej Kao. 2024. Lotaru: Locally predicting workflow task runtimes
for resource management on heterogeneous infrastructures. Future

https://doi.org/10.1109/TPDS.2013.57


Towards Task-Based Scheduling on Truly Heterogeneous Systems

Generation Computer Systems 150 (2024), 171–185. doi:10.1016/j.future.
2023.08.022

[4] Gabriel Bathie, Loris Marchal, Yves Robert, and Samuel Thibault. 2020.
Revisiting dynamic DAG scheduling under memory constraints for
shared-memory platforms. In Proceedings of the IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW
’20). IEEE, 597–606. doi:10.1109/IPDPSW50202.2020.00102

[5] Anne Benoit, Swann Perarnau, Loïc Pottier, and Yves Robert. 2018.
A Performance Model to Execute Workflows on High-Bandwidth-
Memory Architectures. In Proceedings of the 47th International Confer-
ence on Parallel Processing (Eugene, OR, USA) (ICPP ’18). Association
for Computing Machinery, Article 36, 10 pages. doi:10.1145/3225058.
3225110

[6] Wanli Chang, Yili Guo, Weijie Wang, Yaqi Yao, Fuyang Zhao, Yinjie
Fang, Kuan Jiang, and Liyun Shang. 2025. Invited Paper: Resource
Management on Heterogeneous Chiplets Systems. In Proceedings of
the International Conference On Computer Aided Design (ICAD ’25).
1–8. doi:10.1109/ICCAD66269.2025.11240955

[7] Jinchao Chen, Yu He, Ying Zhang, Pengcheng Han, and Chenglie Du.
2022. Energy-aware scheduling for dependent tasks in heterogeneous
multiprocessor systems. Journal of Systems Architecture 129 (2022),
102598. doi:10.1016/j.sysarc.2022.102598

[8] Rathish Das, Kunal Agrawal, Michael A. Bender, Jonathan Berry,
Benjamin Moseley, and Cynthia A. Phillips. 2020. How to Man-
age High-Bandwidth Memory Automatically. In Proceedings of the
32nd ACM Symposium on Parallelism in Algorithms and Architec-
tures (SPAA ’20). Association for Computing Machinery, 187–199.
doi:10.1145/3350755.3400233

[9] Daniel DeLayo, Kenny Zhang, Kunal Agrawal, Michael A. Bender,
Jonathan W. Berry, Rathish Das, Benjamin Moseley, and Cynthia A.
Phillips. 2022. Automatic HBM Management: Models and Algorithms.
In Proceedings of the 34th ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA ’22). Association for Computing Machinery,
147–159. doi:10.1145/3490148.3538570

[10] Hamza Djigal, Jun Feng, Jiamin Lu, and Jidong Ge. 2021. IPPTS: An Effi-
cient Algorithm for Scientific Workflow Scheduling in Heterogeneous
Computing Systems. IEEE Transactions on Parallel and Distributed
Systems 32, 5 (2021), 1057–1071. doi:10.1109/TPDS.2020.3041829

[11] Birte Friesel, Marcel Lütke Dreimann, and Olaf Spinczyk. 2023. A
Full-System Perspective on UPMEM Performance. In Proceedings of
the 1st Workshop on Disruptive Memory Systems (Koblenz, Germany)
(DIMES ’23). Association for Computing Machinery, New York, NY,
USA, 1–7. doi:10.1145/3609308.3625266

[12] Birte Friesel, Marcel Lütke Dreimann, and Olaf Spinczyk. 2024. Per-
formance Models for Task-based Scheduling with Disruptive Memory
Technologies. In Proceedings of the 2nd Workshop on Disruptive Mem-
ory Systems (Austin, TX, USA) (DIMES ’24). Association for Computing
Machinery, 1–8. doi:10.1145/3698783.3699376

[13] Birte Friesel and Olaf Spinczyk. 2025. Understanding Product Line
Runtime Performance with Behaviour Models and Regression Model
Trees. In Proceedings of the 29th ACM International Systems and Soft-
ware Product Line Conference - Volume A (A Coruña, Spain) (SPLC-A
’25). New York, NY, USA, 142–148. doi:10.1145/3744915.3748472

[14] Nathan Grinsztajn, Olivier Beaumont, Emmanuel Jeannot, and
Philippe Preux. 2021. READYS: A Reinforcement Learning Based
Strategy for Heterogeneous Dynamic Scheduling. In International
Conference on Cluster Computing (CLUSTER ’21). IEEE, 70–81. doi:10.
1109/Cluster48925.2021.00031

[15] Juan Gómez-Luna, Izzat El Hajj, Ivan Fernandez, Christina Gian-
noula, Geraldo F. Oliveira, and Onur Mutlu. 2022. Benchmarking
a New Paradigm: Experimental Analysis and Characterization of a

Real Processing-in-Memory System. IEEE Access 10 (2022), 52565–
52608. doi:10.1109/ACCESS.2022.3174101

[16] Jonas Hollmann, Matthias Lüders, Jakob Arndt, Ioannis Kyriakopoulos,
and Holger Blume. 2025. A Practical Survey on Static Task Scheduling
Optimization Approaches for Heterogeneous Architectures. In Pro-
ceedings of the Euro-Par Parallel Processing Workshops (Euro-Par ’24).
Springer Nature Switzerland, Cham, 425–437. doi:10.1007/978-3-031-
90200-0

[17] Mehdi Hosseinzadeh, Elham Azhir, Jan Lansky, Stanislava Mildeova,
Omed Hassan Ahmed, Mazhar Hussain Malik, and Faheem Khan. 2023.
Task SchedulingMechanisms for Fog Computing: A Systematic Survey.
IEEE Access 11 (2023), 50994–51017. doi:10.1109/ACCESS.2023.3277826

[18] Bushra Jamil, Humaira Ijaz, Mohammad Shojafar, Kashif Munir, and
Rajkumar Buyya. 2022. Resource Allocation and Task Scheduling
in Fog Computing and Internet of Everything Environments: A Tax-
onomy, Review, and Future Directions. ACM Comput. Surv. 54, 11s,
Article 233 (Sept. 2022), 38 pages. doi:10.1145/3513002

[19] Amanda Jayanetti and Rajkumar Buyya. 2019. J-OPT: A Joint Host
and Network Optimization Algorithm for Energy-Efficient Work-
flow Scheduling in Cloud Data Centers. In Proceedings of the 12th
IEEE/ACM International Conference on Utility and Cloud Computing
(Auckland, New Zealand) (UCC’19). Association for Computing Ma-
chinery, 199–208. doi:10.1145/3344341.3368822

[20] Mohammad Laghari and Didem Unat. 2017. Object Placement for
High Bandwidth Memory Augmented with High Capacity Memory. In
Proceedings of the 29th International Symposium on Computer Architec-
ture and High Performance Computing (SBAC-PAD ’17). IEEE, 129–136.
doi:10.1109/SBAC-PAD.2017.24

[21] Marcel Lütke Dreimann, Birte Friesel, and Olaf Spinczyk. 2024. Het-
Sim: A Simulator for Task-based Scheduling on Heterogeneous Hard-
ware. In Companion of the 15th ACM/SPEC International Conference
on Performance Engineering (London, UK) (ICPE ’24 Companion). As-
sociation for Computing Machinery, New York, NY, USA, 261–268.
doi:10.1145/3629527.3652275

[22] Sanjaya K. Panda and Prasanta K. Jana. 2015. Efficient task scheduling
algorithms for heterogeneous multi-cloud environment. The Journal
of Supercomputing 71 (2015), 1505–1533. Issue 4. doi:10.1007/s11227-
014-1376-6

[23] H. Topcuoglu, S. Hariri, and Min-YouWu. 2002. Performance-effective
and low-complexity task scheduling for heterogeneous computing.
IEEE Transactions on Parallel and Distributed Systems 13, 3 (2002),
260–274. doi:10.1109/71.993206

[24] Jeffrey D Ullman. 1975. NP-complete scheduling problems. Journal of
Computer and System sciences 10, 3 (1975), 384–393.

[25] Min Wang, Haoyuan Wang, Sibo Qiao, Jiawang Chen, Qin Xie, and
Cuijuan Guo. 2025. Heterogeneous system list scheduling algorithm
based on improved optimistic cost matrix. Future Generation Computer
Systems 164 (2025), 107576. doi:10.1016/j.future.2024.107576

[26] Yong Wang, Bingtao Hu, Yixiong Feng, Zhiwu Li, Yiping Feng, and
Jianrong Tan. 2023. A Decomposition-Based Approach for Multi-
task Scheduling With Execution Uncertainty in Industrial Internet of
Things. IEEE Internet of Things Journal 10, 12 (2023), 10222–10235.
doi:10.1109/JIOT.2023.3237727

[27] Wei Wu, Aurelien Bouteiller, George Bosilca, Mathieu Faverge, and
Jack Dongarra. 2015. Hierarchical DAG Scheduling for Hybrid Dis-
tributed Systems. In Proceedings of the International Parallel and Dis-
tributed Processing Symposium (IPDPS ’15). 156–165. doi:10.1109/IPDPS.
2015.56

[28] Yujian Wu, Shanjiang Tang, Ce Yu, Bin Yang, Chao Sun, Jian Xiao, Hu-
tong Wu, and Jinghua Feng. 2025. Task Scheduling in Geo-Distributed
Computing: A Survey. IEEE Transactions on Parallel and Distributed
Systems 36, 10 (2025), 2073–2088. doi:10.1109/TPDS.2025.3591010

https://doi.org/10.1016/j.future.2023.08.022
https://doi.org/10.1016/j.future.2023.08.022
https://doi.org/10.1109/IPDPSW50202.2020.00102
https://doi.org/10.1145/3225058.3225110
https://doi.org/10.1145/3225058.3225110
https://doi.org/10.1109/ICCAD66269.2025.11240955
https://doi.org/10.1016/j.sysarc.2022.102598
https://doi.org/10.1145/3350755.3400233
https://doi.org/10.1145/3490148.3538570
https://doi.org/10.1109/TPDS.2020.3041829
https://doi.org/10.1145/3609308.3625266
https://doi.org/10.1145/3698783.3699376
https://doi.org/10.1145/3744915.3748472
https://doi.org/10.1109/Cluster48925.2021.00031
https://doi.org/10.1109/Cluster48925.2021.00031
https://doi.org/10.1109/ACCESS.2022.3174101
https://doi.org/10.1007/978-3-031-90200-0
https://doi.org/10.1007/978-3-031-90200-0
https://doi.org/10.1109/ACCESS.2023.3277826
https://doi.org/10.1145/3513002
https://doi.org/10.1145/3344341.3368822
https://doi.org/10.1109/SBAC-PAD.2017.24
https://doi.org/10.1145/3629527.3652275
https://doi.org/10.1007/s11227-014-1376-6
https://doi.org/10.1007/s11227-014-1376-6
https://doi.org/10.1109/71.993206
https://doi.org/10.1016/j.future.2024.107576
https://doi.org/10.1109/JIOT.2023.3237727
https://doi.org/10.1109/IPDPS.2015.56
https://doi.org/10.1109/IPDPS.2015.56
https://doi.org/10.1109/TPDS.2025.3591010


Birte Friesel, Marcel Lütke Dreimann, Mario Porrmann, and Olaf Spinczyk

[29] Yuming Xu, Kenli Li, Jingtong Hu, and Keqin Li. 2014. A genetic
algorithm for task scheduling on heterogeneous computing systems
using multiple priority queues. Information Sciences 270 (2014), 255–
287. doi:10.1016/j.ins.2014.02.122

[30] Longxin Zhang, Kenli Li, Changyun Li, and Keqin Li. 2017. Bi-objective
workflow scheduling of the energy consumption and reliability in
heterogeneous computing systems. Information Sciences 379 (2017),
241–256. doi:10.1016/j.ins.2016.08.003

https://doi.org/10.1016/j.ins.2014.02.122
https://doi.org/10.1016/j.ins.2016.08.003

	Abstract
	1 Introduction
	2 Task and Platform Model
	3 Related Work
	4 Limitations and Recommendations
	4.1 Task Definition
	4.2 Setup and Reconfiguration
	4.3 Data Transfer
	4.4 Proposal

	5 Example: PrIM SEL
	5.1 Task Model
	5.2 Hardware Model
	5.3 Example Schedule

	6 Conclusion
	Acknowledgments
	References

