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Abstract

Current desktop and server computers run on firmware that
is compatible to the UEFI standard[37] and responsible for ini-
tializing the hardware and loading a bootloader, e.g. GRUB[8].
The bootloader then prepares the early boot environment
and hands control over to the operating system. Modern
bootloaders provide many features and functionalities such
as interactive scripting languages which results in large code
bases — GRUB consists of 300 thousand lines of C/C++ and
64 thousand lines of assembly code. It is not surprising that
numerous memory safety violations have been detected in
various existing bootloaders[39]. We think many of these
issues can be addressed by writing a bootloader in Rust. In
this paper we present the design and implementation of tow-
boot — a bootloader written in Rust for Multiboot 1 and 2
kernels on UEFI-based x86 / x86_64 systems.

1 Introduction

Rust[27] is a systems programming language that allows
writing low-level code using both high-level abstractions
and assembly code. The compiler checks type- and memory-
safety which is especially useful for programs that have to
manually manage memory, such as bootloaders, as Uzlu and
Saykol[38] have suggested. Multiboot[6][7] is a file format
used by many kernels.

towboot is a bootloader for Multiboot kernels on UEFI-
based x86 systems, written in Rust, supporting most features
of Multiboot 1 and 2, such as ACPI and SMBIOS. It comes
with towbootctl, a small tool for installing the bootloader, a
configuration file, kernels and modules to a disk or a newly
created image.

2 Background

A bootloader is the glue between firmware and kernel, so
it can make good use of existing technologies and software.
The UEFI API is high-level and platform-agnostic, but the
Multiboot standard requires dealing with some x86 specifics.
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2.1 UEFI

The Unified Extensible Firmware Interface[37] is a standard
specifying the API of a computer’s firmware. It is designed
to be both extensible and backwards compatible by using
protocols with a UUID and an optional revision. In order for
an application to use a protocol it has to be supported by the
firmware or by an installed third-party driver or application.
Each entity (e.g. a device or file) can support multiple pro-
tocols and is identified by an opaque handle. The efi_main
function of an application receives a pointer to the System
Table, alongside a handle identifying the application. This
table contains a revision, handles for standard input, out-
put and error and pointers to the Boot and Runtime Services
and to additional configuration tables. It is available both
during the boot process and the normal operation of a sys-
tem, but the Boot Services are only available during boot.
They allow an application to manage memory, to run other
applications and to access all available protocols. Runtime
Services are also available after booting and allow access to,
for instance, the clock, power management, UEFI variables
and the firmware’s update mechanism.

The following protocols are important for building a boot-
loader, though there are more protocols which could be use-
ful, e.g. mouse or block-based disk access:

e Loaded Image Protocol

e Simple File System Protocol / File Protocol
e Simple Text Input / Output Protocol

e Graphics Output Protocol

2.1.1  Execution environment. UEFI applications are relocat-
able Portable Executables that are loaded by the firmware or
by another application. They are executed in the same CPU
mode as the firmware, so (in most cases) 64-Bit Mode, with
a 1:1 memory mapping. There are two booting modes:

Boot variables. Operating systems installed on the device
write their bootloader and its command line to a new vari-
able named BootXXXX (XXXX being a four-digit hexadecimal
number) and add the number to the BootOrder variable.

Removable media. Operating systems installed on a disk
place their bootloader at \EFI\BOOT\BOOTarch.EFI (where
arch is the name of the architecture). That way, a single boot
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medium can support multiple architectures, but supplying
command line arguments is not possible in this case.

2.2 Multiboot

Multiboot[6][7] is a standard specifying the interaction be-
tween kernels and bootloaders. It emerged from the GNU
GRUB|8] project which acts as a sort of reference implemen-
tation on the bootloader side. gnumach[11], GNU HURD[9]’s
kernel, is another GNU project implementing the kernel side.

There are currently two major versions of Multiboot in
use: 0.6.96 (“1”) and 2.0 (“2”). While Multiboot 2 is modular
and more flexible, version 1 remains popular, with even gnu-
mach still on version 1. The information passed in version
2 is very similar, it is mostly the structure of the headers
which differs. The standard allows a bootloader to load a ker-
nel and modules such as an initial ramdisk image, passing
information about the system.

The Rust bindings for Multiboot are provided by the multi-
boot[42] and multiboot2[25] crates, to which we added sup-
port for setting values and parsing the headers[31][30].

2.2.1 Passing information to the bootloader. The kernel im-
age contains static information in the form of the Multiboot
header, starting with a magic value and a checksum. It may
contain more information that may require the bootloader
to align the loaded modules at 4KB, to pass memory or video
mode information, or to load the kernel as a flat binary. It
may also signify that the kernel is UEFI-aware.

2.2.2  Passing information to the kernel. The bootloader places
a Multiboot information struct in memory and a pointer to it
in the EBX register. A magic value in EAX lets the kernel know
that it was booted via Multiboot. This struct may contain
the following information:

Memory information
Kernel command line
Module information
Symbol information
Bootloader name
Framebuffer information
EFI pointers

SMBIOS

ACPI

Networking information
Relocation information
Legacy: boot device, drives, config table, APM, VBE

2.2.3  Machine state. The standard requires the CPU to be in
32-bit Protected Mode, without paging or interrupts. Multi-
boot 2 also allows for UEFI-aware kernels to be started in the
firmware’s native mode. This is easier for both bootloader
and kernel and makes it possible to stay in 64-Bit Mode on
most systems.
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2.24  Alternatives. Limine[16] has its own, operating system
agnostic boot protocol. Both Linux[33] and NetBSD[21] roll
their own boot protocol, although the Linux kernel also
supports being loaded as a UEFI application and NetBSD
also supports Multiboot. The bootloader crate[24] has its
own boot protocol.

3 Related work
There are other bootloaders supporting UEFI and Multiboot:

Table 1: comparison of bootloaders

’ bootloader‘ version ‘ LOC* ‘ features
scripting language,
452249 . .
GRUB 2.14 C: 359613 interactive shell.,
(2026) support for many disk /
ASM: 63912 .
partition / file formats
603 383509 lightweight,
Syslinux @ 0 14) C: 347028 support for multiple
ASM: 9287 file formats
10.6.3 23347 support for multiple
Limine (2626) C: 20939 file formats, own
ASM: 396 boot protocol
17653 support for multiple
Easyboot 56(3(7)23)6 C: 16446 file formats, own
ASM: 307 boot protocol
b
0.11.0 >o14 small, written in
towboot (2026) Rust: 3431 mostly safe Rust®
ASM: 20 Y

“measured with tokei[41]
bexcluding dependencies
€95 percent of expressions, measured with count-unsafe[19]

e GRUB(8] is a widely used bootloader supporting var-
ious platforms and operating system interfaces. It
features a menu where entries can be interactively
edited and is configured via a complex scripting lan-
guage. It acts as a sort of reference implementation
of the Multiboot standard on the bootloader side.

e Syslinux[35] isa very lightweight bootloader support-
ing multiple platforms and some operating system
interfaces. Its current release is from 2014.

e Limine[16] supports various platforms and operating
systems. It also has an own boot protocol.

e Easyboot / Simpleboot[3][28] support many kernel
file formats, operating systems and architectures.

These bootloaders are written in C and some of them have
had multiple security-related bugs in the past.[39] Uzlu and
Saykol[38] suggested to use Rust for developing bootloaders
for its memory safety and high-level semantics back in 2016.
There are other bootloaders written in Rust:
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e Redox[26] and Hermit[13] have bootloaders, but they
are specific to the operating system.

e Sprout[4] only supports chain-loading.

e The bootloader crate[24] has its own boot protocol.

o Lukas Markeffsky[18] built a bootloader in his Bach-
elor’s thesis, but it has no support for Multiboot.

4 Boot process

initialize the bootloader

[ef i_main function, handle, System Table]

[setup uefi-rs (memory allocator, logging)]

[Loaded Image Protocol: Load Options, device]

determine what to boot

[parse the command line parameters]

[parse the configuration ﬁle]

display a menu

boot the operating system
load the kernel

[load the modules]

[conﬁgure the graphics output]

[prepare the information to pass to the kernel]

point of no return

deinitialize most parts of the bootloader]

[jump to the kernel’s entry pointJ

Figure 1: boot process (bootloader, other components)

The process from entering the efi_main function to jump-
ing into the kernel can be split into the following steps:

4.1 Initialize the bootloader

The firmware calls the efi_main function with two parame-
ters: a handle representing the application and a reference to
the System Table. Together, they are used to setup uefi-rs,
which will initialize the memory allocator and the logging
framework, and, by using UEFI's Loaded Image Protocol, to

acquire more information about the current state of the sys-
tem, namely the options passed on the command line (“load
options”) and the device the application was loaded from
(which is most likely going to be the ESP?).

4.2 Determine what to boot

The configuration containing what kernel and modules to
load and what parameters to pass to them can come from
the command line or from a TOML file (that itself may be
specified on the command line). So, towboot first parses the
command line parameters to determine whether to load a
configuration file (and which one). It then loads the configu-
ration file and displays a menu.

Command line parameters can be used for either manually
booting from the EFI shell or in combination with another
bootloader, such as rEFInd[29] or systemd-boot[32]. This
method can also be used to configure Boot#### entries in
the firmware and use the firmware’s boot manager (see [37]
section 3.1).

4.3 Boot the operating system

4.3.1 Load the kernel. The kernel image can be a flat binary
(AOut) or an ELF file. In both cases the file is loaded com-
pletely into memory. The Multiboot header then specifies
the type and contains more information. Then parts of the
file are copied to newly allocated memory (specified either
by the Multiboot header or by the ELF Program Header). In
case of an ELF file, the Section Header and symbols are also
copied to memory.

4.3.2  Load the modules. The specified module images are
loaded to newly allocated memory pages.

4.3.3 Configure the graphics output. The kernel’s Multiboot
header may specify a preferred text or graphics mode but
UEFI’s Graphics Output Protocol only allows a graphical
mode to be used by writing to a framebuffer in memory
(and this is not even guaranteed to work on all setups) — text
mode, resolution change and more graphics features are only
available by calling methods which the kernel may not have
support for.

So, towboot lists the possible modes of the first GPU and
compares them to the kernel’s preferred resolution. If there
is a match it is used, else it keeps using the current mode; in
many cases, this will be the native resolution. This can also
be forced with the KeepResolution quirk.

4.3.4  Prepare the information to pass to the kernel. The boot-
loader allocates the Multiboot information struct and fills it
with information about the kernel command line, the loaded

EFI System Partition, a FAT partition where installed UEFI applications
reside



modules (and their command line), the ELF Section Header
and symbols (if possible), the bootloader name, the frame-
buffer, the System Table, the image handle, ACPI, SMBIOS,
whether the Boot Services have been exited, and where the
kernel was loaded. Information about the memory configu-
ration is not passed here because it could still change.

4.3.5 Deinitialize most parts of the bootloader. Exiting the
Boot Services frees some parts of the memory and produces
a memory map, but also causes the bootloader to lose access
to the file system, console and memory allocator. This is the
point of no return: It is not possible to go back to a menu or
exit with an error code. The only error handling still possible
is panicking: printing a message to the console (which may
itself fail at this point), waiting and resetting the machine.

This memory map is then converted into the respective
Multiboot structs: everything except broken memory, the
Runtime Services’ memory, memory-mapped 10 or memory
containing ACPI tables is marked as available, then adja-
cent entries are joined. The two fields describing the legacy
“lower” and “upper” memory are also computed from the
generated memory map. Then, the kernel is moved to the
correct position in memory if this failed initially.

4.3.6  Jump to the kernel’s entry point. If the kernel is not
aware of UEFI, towboot sets up the machine state the Multi-
boot standard requires, before jumping to the kernel’s entry
point, passing the Multiboot signature and a pointer to the
Multiboot information struct via the EAX and EBX registers.

5 Rust and memory management
5.1 UEFI and Rust

Rust[27] is a system programming language developed orig-
inally at Mozilla. It allows writing low-level code using
both high-level abstractions and assembly code, if neces-
sary. The compiler checks type- and memory-safety of the
program, excluding code explicitly marked as unsafe. It
comes with cargo, a tool that manages (among others) (cross-
)compilation, tests, documentation and dependencies?.

Compiling UEFI applications is supported by Rust itself
as the 1686-unknown-uefi and x86_64-unknown-uefi tar-
gets. They are rated as “Tier 2”[34] which means that pre-
built binaries exist, but they are not guaranteed to work. The
standard library is partially usable: core and alloc work,
and parts of std exist, but they are not useful enough yet to
build a bootloader.

The uefi-rs crate[17] provides access to the API and maps
it to mostly safe data structures and methods.

UEFI applications are usually written in C using either gnu-
efi[10] or the EFI Development Kit[36]. C makes structuring
the software much harder as there is no built-in support

2Both libraries and executables are called crates.
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for either namespacing, dependency management or build
automation. Using gnu-efi to build a UEFI application is
further complicated by the different calling conventions and
executable file formats between the GNU toolchain and UEFL
C also does not provide type- or memory-safety which makes
bugs in the code much easier to miss.

5.2 Bootloaders and memory management

Bootloaders are special when it comes to memory manage-
ment, as noted by Uzlu and $Saykol[38]: In addition to the
stack and the heap that are being used as usual, modules and
kernel code need to be loaded to specific locations. Also, even
though memory is managed by the firmware, bootloaders
have full access to the whole memory; out-of-bounds array
accesses or dereferencing invalid pointers usually do not
cause exceptions or page faults.

That is a major reason why Rust is useful for writing
bootloaders: invalid memory accesses are checked in large
parts at compile-time and (in debug builds, at least) also at
runtime.

5.2.1 Stack. Placing variables on the Rust stack by using
local variables does always work, but is limited to structures
that have their size known at compile time. This is used
for most runtime data. This memory is tracked by rustc at
compile time.

5.2.2 Heap. uefi-rs binds Rust’s global memory allocator
to the UEFI Boot Services” allocate_pool, so this memory
is tracked both by rustc at compile time to some extend
and by the firmware at runtime. This is used for everything
with a dynamic size and no further special requirements, for
instance the configuration file.

5.2.3 Whole pages. There are allocations with such special
requirements, however: The kernel code has to be placed
at the exact same spot which it was built to be placed at.
Modules may need to be loaded page-aligned, so that the
kernel can simply map them into its paging. Some kernels
expect the information structs to be placed low in memory.

In these cases, the UEFI Boot Services’ allocate_pages
function is wrapped by the mem: : UefiAllocation struct. It
contains a custom Drop implementation which calls the Boot
Services’ free_pages function to propagate freed memory
back from Rust to UEFL This struct is, in turn, wrapped by
the mem: :Allocation struct, because allocate_pages can
just allocate whole pages and kernel code sections are often
not page-aligned.

There is another caveat: The address at which the kernel
has to be loaded to may not be available when loading the
kernel. It might be used by UEFI’s Boot Services, for example.
This is solved by loading the kernel to a different address
first and copying it to the correct address after exiting Boot
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try point version 2, but got 3

Figure 2: booting the Multiboot 2 example kernel

Services, if the destination address is not marked as reserved
in the memory map passed to the kernel.

5.2.4  References passed to the kernel. Information is passed
to the kernel by writing the address of the Multiboot infor-
mation struct to a register before jumping to the kernel’s
entry point. Some parts of this information are scalar values
contained in the passed struct but other parts are pointers
to additional structs. rustc may not able to determine that
these structs are being used by the kernel, so they are inten-
tionally leaked by calling core: :mem: : forget on them to
make sure that they are not preemptively freed.

6 Evaluation
6.1 Automated testing

The multiboot and multiboot2 crates have unit tests.

This is not feasible for the whole bootloader: large parts
of it depends on the UEFI APIL This API has a quite large
surface and would be difficult to mock. So instead, there are
integration tests that compile the bootloader, build images
containing the bootloader, a configuration file and a ker-
nel, boot them in QEMU and ensure the output matches the
expected one. We used the example kernels from the Multi-
boot specifications[6][7] for this, slightly altered to output
to the serial port instead of CGA which is easier to capture
for testing and the used firmware does not support CGA.
Framebuffer usage is not checked automatically.

6.2 Manual testing

Booting the example kernels manually displays a diagonal
blue line via the passed framebuffer (see figure 2) and outputs
various information about the system on the serial port:

cargo xtask build -- -kernel "tests/multiboot2/kernel foo"

[EIEN)
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Finished dev profile [unoptimized + debuginfo] target(s) in 0.26s
Running ~target/debug/xtask build -- -kernel 'tests/multiboot2/
kernel foo'"

[INFO xtask] building for 1686, pass --no-i686 to skip this
Finished dev profile [unoptimized + debuginfo] target(s) in 0.18s
[INFO xtask] building for x86_64, pass --no-x86-64 to skip this
Finished dev profile [unoptimized + debuginfo] target(s) in 0.17s
[INFO towbootctl] calculating image size
[INFO towbootctl] adding "tests/multiboot2/kernel" as "kernel"
[INFO towbootctl] adding "/tmp/.tmpyk6aoe" as "towboot.toml"
[INFO towbootctl] adding "target/i686-unknown-uefi/debug/towboot.
efi" as "EFI/Boot/bootia32.efi"

towbootctl] adding "target/x86_64-unknown-uefi/debug/
towboot.efi" as "EFI/Boot/bootx64.efi"
[INFO towbootctl] creating image at image.img (size:
> cargo xtask boot-image
Finished dev profile [unoptimized + debuginfo] target(s)

[INFO

4 MiB)

in 0.24s

Running ~target/debug/xtask boot-image~
[INFO towbootctl] getting firmware
[INFO cached_path::cache] Cached version of https://retrage.
github.io/edk2-nightly/bin/RELEASEIa32_OVMF.fd is up-to-date
[INFO towbootctl] spawning QEMU
WARNING: Image format was not specified for 'image.img' and
probing guessed raw. Automatically detecting the format is
dangerous for raw images, write operations on block @ will be
restricted. Specify the 'raw' format explicitly to remove
the restrictions.
[
]
BdsDxe: loading Boot@@@2 "UEFI QEMU HARDDISK QM@@@@1 " from
PciRoot (0x0)/Pci(0x1,0x1)/Ata(Primary,Master ,0x0)
BdsDxe: starting Boot@@@2 "UEFI QEMU HARDDISK QMe@e@e@1 " from
PciRoot (0x@)/Pci(@x1,0x1)/Ata(Primary,Master ,0x0)
[ INFOJ]: towboot/src/file.rs@e53: loading file '\towboot.toml'...
[ INFOJ]: towboot/src/main.rs@107: loading kernel...
[ INFO]: towboot/src/file.rs@e53: loading file 'kernel'...
[ INFOJ: towboot/src/boot/mod.rs@349: kernel is loaded and
bootable
[ INFOJ: towboot/src/boot/mod.rs@357: loaded @ modules
[ INFO]: towboot/src/boot/video.rs@028: setting up the video...
[ WARN]: towboot/src/boot/video.rs@@39: color depth will be 24-bit
, but the kernel wants 32
[ INFOJ]: towboot/src/boot/video.rs@@97: set (1024, 768) as the
video mode
[ WARN]: towboot/src/boot/config_tables.rs@094: expected SMBIOS
entry point version 2, but got 3
[ INFOJ]: towboot/src/main.rs@111: booting kernel..
[ INFOJ]: towboot/src/boot/mod.rs@417: exiting boot services...
Announced mbi size 0x2220
Tag 0x1, Size 0xc
Command line = foo
Tag 0x2, Size 0x17
Boot loader name = towboot ©.11.0
Tag 0x4, Size 0x10
mem_lower = 640KB, mem_upper = 7192KB
Tag 0x6, Size 0xa78
mmap
base_addr = 0x00, length = 0x0a@000, type = 0x
base_addr = 0x0100000, length = 0x0706000, type = 0x1
base_addr = 0x0806000, length = 0x02000, type = 0x4
base_addr = 0x0808000, length = 0x08000, type = 0x1
base_addr = 0x0810000, length = 0x0f0000, type = 0x4
base_addr = 0x0900000, length = 0xQe7bc0@@, type = 0x1
base_addr = 0x0f0bc00@, length = 0x0114000, type = 0x2
base_addr = 0x0f1de000@, length = 0x09ab@00, type = 0x1
base_addr = 0x0fb7b000@, length = 0x0280000, type = 0x2
base_addr = 0x0fdfbeeo, length = 0x012000, type = 0x3
base_addr = 0x0fe0d0@o, length = 0x080000, type = 0x4
base_addr = 0x0fe8d000@, length = 0x03d000, type = 0x1
base_addr = 0x0feca00@d, length = 0x02000, type = 0x4
base_addr = 0x0fecc000d, length = 0x028000, type = 0x1
base_addr = 0x0fef4000, length = 0x084000, type = 0x2
base_addr = 0x0ff78000, length = 0x088000, type = 0x4
base_addr = 0x00, length = 0x00, type = 0x2
[...]
Tag 0x8, Size 0x26
Tag 0x9, Size 0x1f4



65
66
67
68
69
70
71
72
73

Tag 0xb, Size @xc

Tag 0xd, Size 0x1b5
Tag 0xd, Size Oxlae
Tag 0xe, Size 0xlc
Tag oxf, Size @x2c
Tag 0x11, Size 0x1168
Tag 0x13, Size 0xc
Total mbi size 0x2220
Halted.

Listing 1: booting the Multiboot 2 example kernel

This manual test was performed both in QEMU 8.2.2 and
on real hardware (a Dell Optiplex 9020 with an Intel Core
i7-4770 and 8GiB RAM).

Various existing operating systems have kernels that are
Multiboot-compatible. We tried booting some of them:

Table 2: tested operating systems

(ON] \ version \ status
NetBSD[20] 10.1 works, with 64-bit OVMF
(i386) and the ForceOverwrite
quirk
HelenOS[12] (ia3g,' lzinl de4) works
nightly-
Lemon OS[15] 2025_07}_712 works
2025
GNU HURD(9] (i386) does not work due to
ACPI table placement on
QEMU+OVMF
FlingOS[22] 2015-09-14 | works, with 64-bit OVMF
and the ForceOverwrite
quirk
FiwixOS[5] 3.5 works, with the LowerAl-
locations quirk
2025-10-11
9front[1] RELEASE | works, with the LowerAl-
(amdé64) locations quirk
OpenlIndiana[23] 2025.10 does not work

7 Conclusion

7.1 Summary

The abstractions provided by UEFI allow for writing straight-
forward and high-level bootloaders in comparison to the
legacy BIOS API. uefi-rs maps them nicely to Rust data struc-
tures and methods. The Rust support for this environment is
rather good, but there are still parts of the standard library
missing. The machine state specified by Multiboot requires
a bit of x86-specifics and assembly code.

towboot shows that is possible to boot operating systems
on present-day hardware by using Rust, gaining type- and
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memory-safety®, higher-level programming paradigms such
as map, match and filter, better and earlier error messages
and dependency management in comparison to using C. In
comparison to other bootloaders, towboot has fewer features
(no drivers for file systems, no scripting language, no support
for displaying images and a pretty primitive menu), but fewer
features also lead to a smaller attack surface[39]. The code
is available at https://github.com/hhuOS/towboot.

7.2 Further Improvements

Some features are missing and could be added in the future:

7.2.1 Secure Boot. Most modern systems come with Secure
Boot enabled which should ensure that only signed code is
running in Ring 0. For this to work, the firmware checks the
signature before loading applications which provides some
protection against malware.[40]

Just signing the main bootloader executable with a key
that is trusted by the firmware would be enough to be able
to boot, but this would entirely circumvent this security
measure: Any Multiboot-compatible kernel could be booted,
no matter whether correctly signed or not.

Properly implementing this would mean to add signatures
for at least the kernel* in a backwards-compatible way and
requiring the kernels to verify code loaded into kernel space.

7.2.2  64-bit, UEFI-unaware kernels. towboot only supports
1686 kernels as specified by Multiboot 1 and 2 and UEFI-
aware 1686 and x86_64 kernels as specified by Multiboot 2,
the latter only on systems with 64-bit firmware. Some boot-
loaders (e.g. Syslinux) support elf64 Multiboot 1 kernels[2].
Adding support for this requires detecting CPU support and
switching to Long Mode on 32-bit firmware.

7.2.3 other CPU architectures. UEFI also supports Itanium,
ARM and RISC-V (see [37] section 3.5.1.1). Multiboot 2 sup-
ports just x86 and MIPS (see [7] section 3.2), so there is no
other official overlap. There have been unofficial propos-
als[14] for Multiboot on ARM, though.

7.2.4  compatibility with more OS kernels. As seen in section
6.2, there are existing Multiboot kernels that towboot fails to
boot. This can probably be fixed.
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