
towboot – a Multiboot-compatible bootloader for
UEFI-based x86 systems

Niklas Sombert

niklas.sombert@uni-duesseldorf.de

Heinrich Heine University

Düsseldorf, North Rhine-Westphalia, Germany

Abstract
Current desktop and server computers run on firmware that

is compatible to the UEFI standard[37] and responsible for ini-

tializing the hardware and loading a bootloader, e.g. GRUB[8].

The bootloader then prepares the early boot environment

and hands control over to the operating system. Modern

bootloaders provide many features and functionalities such

as interactive scripting languages which results in large code

bases – GRUB consists of 300 thousand lines of C/C++ and

64 thousand lines of assembly code. It is not surprising that

numerous memory safety violations have been detected in

various existing bootloaders[39]. We think many of these

issues can be addressed by writing a bootloader in Rust. In

this paper we present the design and implementation of tow-
boot – a bootloader written in Rust for Multiboot 1 and 2

kernels on UEFI-based x86 / x86_64 systems.

1 Introduction
Rust[27] is a systems programming language that allows

writing low-level code using both high-level abstractions

and assembly code. The compiler checks type- and memory-

safety which is especially useful for programs that have to

manually manage memory, such as bootloaders, as Uzlu and

Şaykol[38] have suggested. Multiboot[6][7] is a file format

used by many kernels.

towboot is a bootloader for Multiboot kernels on UEFI-

based x86 systems, written in Rust, supporting most features

of Multiboot 1 and 2, such as ACPI and SMBIOS. It comes

with towbootctl, a small tool for installing the bootloader, a

configuration file, kernels and modules to a disk or a newly

created image.

2 Background
A bootloader is the glue between firmware and kernel, so

it can make good use of existing technologies and software.

The UEFI API is high-level and platform-agnostic, but the

Multiboot standard requires dealing with some x86 specifics.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0

International License. DOI: https://dx.doi.org/10.1145.nnnnn. GI/ITG FG

Operating Systems, February 2026, Düsseldorf, DE.

2.1 UEFI
The Unified Extensible Firmware Interface[37] is a standard

specifying the API of a computer’s firmware. It is designed

to be both extensible and backwards compatible by using

protocols with a UUID and an optional revision. In order for

an application to use a protocol it has to be supported by the

firmware or by an installed third-party driver or application.

Each entity (e.g. a device or file) can support multiple pro-

tocols and is identified by an opaque handle. The efi_main
function of an application receives a pointer to the System
Table, alongside a handle identifying the application. This

table contains a revision, handles for standard input, out-

put and error and pointers to the Boot and Runtime Services
and to additional configuration tables. It is available both

during the boot process and the normal operation of a sys-

tem, but the Boot Services are only available during boot.

They allow an application to manage memory, to run other

applications and to access all available protocols. Runtime

Services are also available after booting and allow access to,

for instance, the clock, power management, UEFI variables

and the firmware’s update mechanism.

The following protocols are important for building a boot-

loader, though there are more protocols which could be use-

ful, e.g. mouse or block-based disk access:

• Loaded Image Protocol

• Simple File System Protocol / File Protocol

• Simple Text Input / Output Protocol

• Graphics Output Protocol

2.1.1 Execution environment. UEFI applications are relocat-
able Portable Executables that are loaded by the firmware or

by another application. They are executed in the same CPU

mode as the firmware, so (in most cases) 64-Bit Mode, with

a 1:1 memory mapping. There are two booting modes:

Boot variables. Operating systems installed on the device

write their bootloader and its command line to a new vari-

able named BootXXXX (XXXX being a four-digit hexadecimal

number) and add the number to the BootOrder variable.

Removable media. Operating systems installed on a disk

place their bootloader at \EFI\BOOT\BOOTarch.EFI (where

arch is the name of the architecture). That way, a single boot

https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0
https://dx.doi.org/10.1145.nnnnn

Niklas Sombert

medium can support multiple architectures, but supplying

command line arguments is not possible in this case.

2.2 Multiboot
Multiboot[6][7] is a standard specifying the interaction be-

tween kernels and bootloaders. It emerged from the GNU

GRUB[8] project which acts as a sort of reference implemen-

tation on the bootloader side. gnumach[11], GNUHURD[9]’s

kernel, is another GNU project implementing the kernel side.

There are currently two major versions of Multiboot in

use: 0.6.96 (“1”) and 2.0 (“2”). While Multiboot 2 is modular

and more flexible, version 1 remains popular, with even gnu-

mach still on version 1. The information passed in version

2 is very similar, it is mostly the structure of the headers

which differs. The standard allows a bootloader to load a ker-

nel and modules such as an initial ramdisk image, passing

information about the system.

The Rust bindings for Multiboot are provided by themulti-
boot[42] and multiboot2[25] crates, to which we added sup-

port for setting values and parsing the headers[31][30].

2.2.1 Passing information to the bootloader. The kernel im-

age contains static information in the form of the Multiboot

header, starting with a magic value and a checksum. It may

contain more information that may require the bootloader

to align the loaded modules at 4KB, to pass memory or video

mode information, or to load the kernel as a flat binary. It

may also signify that the kernel is UEFI-aware.

2.2.2 Passing information to the kernel. The bootloader places
a Multiboot information struct in memory and a pointer to it

in the EBX register. A magic value in EAX lets the kernel know
that it was booted via Multiboot. This struct may contain

the following information:

• Memory information

• Kernel command line

• Module information

• Symbol information

• Bootloader name

• Framebuffer information

• EFI pointers

• SMBIOS

• ACPI

• Networking information

• Relocation information

• Legacy: boot device, drives, config table, APM, VBE

2.2.3 Machine state. The standard requires the CPU to be in

32-bit Protected Mode, without paging or interrupts. Multi-

boot 2 also allows for UEFI-aware kernels to be started in the

firmware’s native mode. This is easier for both bootloader

and kernel and makes it possible to stay in 64-Bit Mode on

most systems.

2.2.4 Alternatives. Limine[16] has its own, operating system

agnostic boot protocol. Both Linux[33] and NetBSD[21] roll

their own boot protocol, although the Linux kernel also

supports being loaded as a UEFI application and NetBSD

also supports Multiboot. The bootloader crate[24] has its

own boot protocol.

3 Related work
There are other bootloaders supporting UEFI and Multiboot:

Table 1: comparison of bootloaders

bootloader version LOC
a

features

GRUB

2.14

(2026)

452249

C: 359613

ASM: 63912

scripting language,

interactive shell,

support for many disk /

partition / file formats

Syslinux

6.03

(2014)

383509

C: 347028

ASM: 9287

lightweight,

support for multiple

file formats

Limine

10.6.3

(2026)

23347

C: 20939

ASM: 396

support for multiple

file formats, own

boot protocol

Easyboot

562783be

(2025)

17653

C: 16446

ASM: 307

support for multiple

file formats, own

boot protocol

towboot

0.11.0

(2026)

5514
b

Rust: 3431

ASM: 20

small, written in

mostly safe Rust
c

a
measured with tokei[41]
b
excluding dependencies

c
95 percent of expressions, measured with count-unsafe[19]

• GRUB[8] is a widely used bootloader supporting var-

ious platforms and operating system interfaces. It

features a menu where entries can be interactively

edited and is configured via a complex scripting lan-

guage. It acts as a sort of reference implementation

of the Multiboot standard on the bootloader side.

• Syslinux[35] is a very lightweight bootloader support-

ing multiple platforms and some operating system

interfaces. Its current release is from 2014.

• Limine[16] supports various platforms and operating

systems. It also has an own boot protocol.

• Easyboot / Simpleboot[3][28] support many kernel

file formats, operating systems and architectures.

These bootloaders are written in C and some of them have

had multiple security-related bugs in the past.[39] Uzlu and

Şaykol[38] suggested to use Rust for developing bootloaders

for its memory safety and high-level semantics back in 2016.

There are other bootloaders written in Rust:

towboot – a Multiboot-compatible bootloader for UEFI-based x86 systems

• Redox[26] and Hermit[13] have bootloaders, but they

are specific to the operating system.

• Sprout[4] only supports chain-loading.

• The bootloader crate[24] has its own boot protocol.

• Lukas Markeffsky[18] built a bootloader in his Bach-

elor’s thesis, but it has no support for Multiboot.

4 Boot process

firmware calls efi_main

initialize the bootloader

efi_main function, handle, System Table

setup uefi-rs (memory allocator, logging)

Loaded Image Protocol: Load Options, device

determine what to boot

parse the command line parameters

parse the configuration file

display a menu

boot the operating system

load the kernel

load the modules

configure the graphics output

prepare the information to pass to the kernel

point of no return

deinitialize most parts of the bootloader

jump to the kernel’s entry point

kernel

main function, signature, information struct

Figure 1: boot process (bootloader, other components)

The process from entering the efi_main function to jump-

ing into the kernel can be split into the following steps:

4.1 Initialize the bootloader
The firmware calls the efi_main function with two parame-

ters: a handle representing the application and a reference to

the System Table. Together, they are used to setup uefi-rs,
which will initialize the memory allocator and the logging

framework, and, by using UEFI’s Loaded Image Protocol, to

acquire more information about the current state of the sys-

tem, namely the options passed on the command line (“load

options”) and the device the application was loaded from

(which is most likely going to be the ESP
1
).

4.2 Determine what to boot
The configuration containing what kernel and modules to

load and what parameters to pass to them can come from

the command line or from a TOML file (that itself may be

specified on the command line). So, towboot first parses the
command line parameters to determine whether to load a

configuration file (and which one). It then loads the configu-

ration file and displays a menu.

Command line parameters can be used for either manually

booting from the EFI shell or in combination with another

bootloader, such as rEFInd[29] or systemd-boot[32]. This

method can also be used to configure Boot#### entries in

the firmware and use the firmware’s boot manager (see [37]

section 3.1).

4.3 Boot the operating system
4.3.1 Load the kernel. The kernel image can be a flat binary

(AOut) or an ELF file. In both cases the file is loaded com-

pletely into memory. The Multiboot header then specifies

the type and contains more information. Then parts of the

file are copied to newly allocated memory (specified either

by the Multiboot header or by the ELF Program Header). In

case of an ELF file, the Section Header and symbols are also

copied to memory.

4.3.2 Load the modules. The specified module images are

loaded to newly allocated memory pages.

4.3.3 Configure the graphics output. The kernel’s Multiboot

header may specify a preferred text or graphics mode but

UEFI’s Graphics Output Protocol only allows a graphical

mode to be used by writing to a framebuffer in memory

(and this is not even guaranteed to work on all setups) – text

mode, resolution change and more graphics features are only

available by calling methods which the kernel may not have

support for.

So, towboot lists the possible modes of the first GPU and

compares them to the kernel’s preferred resolution. If there

is a match it is used, else it keeps using the current mode; in

many cases, this will be the native resolution. This can also

be forced with the KeepResolution quirk.

4.3.4 Prepare the information to pass to the kernel. The boot-
loader allocates the Multiboot information struct and fills it

with information about the kernel command line, the loaded

1
EFI System Partition, a FAT partition where installed UEFI applications

reside

Niklas Sombert

modules (and their command line), the ELF Section Header

and symbols (if possible), the bootloader name, the frame-

buffer, the System Table, the image handle, ACPI, SMBIOS,

whether the Boot Services have been exited, and where the

kernel was loaded. Information about the memory configu-

ration is not passed here because it could still change.

4.3.5 Deinitialize most parts of the bootloader. Exiting the
Boot Services frees some parts of the memory and produces

a memory map, but also causes the bootloader to lose access

to the file system, console and memory allocator. This is the

point of no return: It is not possible to go back to a menu or

exit with an error code. The only error handling still possible

is panicking: printing a message to the console (which may

itself fail at this point), waiting and resetting the machine.

This memory map is then converted into the respective

Multiboot structs: everything except broken memory, the

Runtime Services’ memory, memory-mapped IO or memory

containing ACPI tables is marked as available, then adja-

cent entries are joined. The two fields describing the legacy

“lower” and “upper” memory are also computed from the

generated memory map. Then, the kernel is moved to the

correct position in memory if this failed initially.

4.3.6 Jump to the kernel’s entry point. If the kernel is not
aware of UEFI, towboot sets up the machine state the Multi-

boot standard requires, before jumping to the kernel’s entry

point, passing the Multiboot signature and a pointer to the

Multiboot information struct via the EAX and EBX registers.

5 Rust and memory management
5.1 UEFI and Rust
Rust[27] is a system programming language developed orig-

inally at Mozilla. It allows writing low-level code using

both high-level abstractions and assembly code, if neces-

sary. The compiler checks type- and memory-safety of the

program, excluding code explicitly marked as unsafe. It
comes with cargo, a tool that manages (among others) (cross-

)compilation, tests, documentation and dependencies
2
.

Compiling UEFI applications is supported by Rust itself

as the i686-unknown-uefi and x86_64-unknown-uefi tar-

gets. They are rated as “Tier 2”[34] which means that pre-

built binaries exist, but they are not guaranteed to work. The

standard library is partially usable: core and alloc work,

and parts of std exist, but they are not useful enough yet to

build a bootloader.

The uefi-rs crate[17] provides access to the API and maps

it to mostly safe data structures and methods.

UEFI applications are usually written in C using either gnu-

efi[10] or the EFI Development Kit[36]. C makes structuring

the software much harder as there is no built-in support

2
Both libraries and executables are called crates.

for either namespacing, dependency management or build

automation. Using gnu-efi to build a UEFI application is

further complicated by the different calling conventions and

executable file formats between the GNU toolchain and UEFI.

C also does not provide type- or memory-safety whichmakes

bugs in the code much easier to miss.

5.2 Bootloaders and memory management
Bootloaders are special when it comes to memory manage-

ment, as noted by Uzlu and Şaykol[38]: In addition to the

stack and the heap that are being used as usual, modules and

kernel code need to be loaded to specific locations. Also, even

though memory is managed by the firmware, bootloaders

have full access to the whole memory; out-of-bounds array

accesses or dereferencing invalid pointers usually do not

cause exceptions or page faults.

That is a major reason why Rust is useful for writing

bootloaders: invalid memory accesses are checked in large

parts at compile-time and (in debug builds, at least) also at

runtime.

5.2.1 Stack. Placing variables on the Rust stack by using

local variables does always work, but is limited to structures

that have their size known at compile time. This is used

for most runtime data. This memory is tracked by rustc at
compile time.

5.2.2 Heap. uefi-rs binds Rust’s global memory allocator

to the UEFI Boot Services’ allocate_pool, so this memory

is tracked both by rustc at compile time to some extend

and by the firmware at runtime. This is used for everything

with a dynamic size and no further special requirements, for

instance the configuration file.

5.2.3 Whole pages. There are allocations with such special

requirements, however: The kernel code has to be placed

at the exact same spot which it was built to be placed at.

Modules may need to be loaded page-aligned, so that the

kernel can simply map them into its paging. Some kernels

expect the information structs to be placed low in memory.

In these cases, the UEFI Boot Services’ allocate_pages
function is wrapped by the mem::UefiAllocation struct. It

contains a custom Drop implementation which calls the Boot

Services’ free_pages function to propagate freed memory

back from Rust to UEFI. This struct is, in turn, wrapped by

the mem::Allocation struct, because allocate_pages can

just allocate whole pages and kernel code sections are often

not page-aligned.

There is another caveat: The address at which the kernel

has to be loaded to may not be available when loading the

kernel. It might be used by UEFI’s Boot Services, for example.

This is solved by loading the kernel to a different address

first and copying it to the correct address after exiting Boot

towboot – a Multiboot-compatible bootloader for UEFI-based x86 systems

Figure 2: booting the Multiboot 2 example kernel

Services, if the destination address is not marked as reserved

in the memory map passed to the kernel.

5.2.4 References passed to the kernel. Information is passed

to the kernel by writing the address of the Multiboot infor-

mation struct to a register before jumping to the kernel’s

entry point. Some parts of this information are scalar values

contained in the passed struct but other parts are pointers

to additional structs. rustc may not able to determine that

these structs are being used by the kernel, so they are inten-

tionally leaked by calling core::mem::forget on them to

make sure that they are not preemptively freed.

6 Evaluation
6.1 Automated testing
The multiboot and multiboot2 crates have unit tests.

This is not feasible for the whole bootloader: large parts

of it depends on the UEFI API. This API has a quite large

surface and would be difficult to mock. So instead, there are

integration tests that compile the bootloader, build images

containing the bootloader, a configuration file and a ker-

nel, boot them in QEMU and ensure the output matches the

expected one. We used the example kernels from the Multi-

boot specifications[6][7] for this, slightly altered to output

to the serial port instead of CGA which is easier to capture

for testing and the used firmware does not support CGA.

Framebuffer usage is not checked automatically.

6.2 Manual testing
Booting the example kernels manually displays a diagonal

blue line via the passed framebuffer (see figure 2) and outputs

various information about the system on the serial port:

1 cargo xtask build -- -kernel "tests/multiboot2/kernel foo"

2 Finished dev profile [unoptimized + debuginfo] target(s) in 0.26s

3 Running `target/debug/xtask build -- -kernel 'tests/multiboot2/

kernel foo '`
4 [INFO xtask] building for i686 , pass --no-i686 to skip this

5 Finished dev profile [unoptimized + debuginfo] target(s) in 0.18s

6 [INFO xtask] building for x86_64 , pass --no-x86 -64 to skip this

7 Finished dev profile [unoptimized + debuginfo] target(s) in 0.17s

8 [INFO towbootctl] calculating image size

9 [INFO towbootctl] adding "tests/multiboot2/kernel" as "kernel"

10 [INFO towbootctl] adding "/tmp/. tmpyk6aoe" as "towboot.toml"

11 [INFO towbootctl] adding "target/i686 -unknown -uefi/debug/towboot.

efi" as "EFI/Boot/bootia32.efi"

12 [INFO towbootctl] adding "target/x86_64 -unknown -uefi/debug/

towboot.efi" as "EFI/Boot/bootx64.efi"

13 [INFO towbootctl] creating image at image.img (size: 4 MiB)

14 > cargo xtask boot -image

15 Finished dev profile [unoptimized + debuginfo] target(s) in 0.24s

16 Running `target/debug/xtask boot -image `
17 [INFO towbootctl] getting firmware

18 [INFO cached_path ::cache] Cached version of https :// retrage.

github.io/edk2 -nightly/bin/RELEASEIa32_OVMF.fd is up-to-date

19 [INFO towbootctl] spawning QEMU

20 WARNING: Image format was not specified for 'image.img ' and

probing guessed raw. Automatically detecting the format is

dangerous for raw images , write operations on block 0 will be

restricted. Specify the 'raw ' format explicitly to remove

the restrictions.

21 0

22 0

23 BdsDxe: loading Boot0002 "UEFI QEMU HARDDISK QM00001 " from

PciRoot (0x0)/Pci(0x1 ,0x1)/Ata(Primary ,Master ,0x0)

24 BdsDxe: starting Boot0002 "UEFI QEMU HARDDISK QM00001 " from

PciRoot (0x0)/Pci(0x1 ,0x1)/Ata(Primary ,Master ,0x0)

25 [INFO]: towboot/src/file.rs@053: loading file '\towboot.toml '...

26 [INFO]: towboot/src/main.rs@107: loading kernel ...

27 [INFO]: towboot/src/file.rs@053: loading file 'kernel '...

28 [INFO]: towboot/src/boot/mod.rs@349: kernel is loaded and

bootable

29 [INFO]: towboot/src/boot/mod.rs@357: loaded 0 modules

30 [INFO]: towboot/src/boot/video.rs@028: setting up the video ...

31 [WARN]: towboot/src/boot/video.rs@039: color depth will be 24-bit

, but the kernel wants 32

32 [INFO]: towboot/src/boot/video.rs@097: set (1024, 768) as the

video mode

33 [WARN]: towboot/src/boot/config_tables.rs@094: expected SMBIOS

entry point version 2, but got 3

34 [INFO]: towboot/src/main.rs@111: booting kernel ...

35 [INFO]: towboot/src/boot/mod.rs@417: exiting boot services ...

36 Announced mbi size 0x2220

37 Tag 0x1, Size 0xc

38 Command line = foo

39 Tag 0x2, Size 0x17

40 Boot loader name = towboot 0.11.0

41 Tag 0x4, Size 0x10

42 mem_lower = 640KB, mem_upper = 7192KB

43 Tag 0x6, Size 0xa78

44 mmap

45 base_addr = 0x00 , length = 0x0a0000 , type = 0x1

46 base_addr = 0x0100000 , length = 0x0706000 , type = 0x1

47 base_addr = 0x0806000 , length = 0x02000 , type = 0x4

48 base_addr = 0x0808000 , length = 0x08000 , type = 0x1

49 base_addr = 0x0810000 , length = 0x0f0000 , type = 0x4

50 base_addr = 0x0900000 , length = 0x0e7bc000 , type = 0x1

51 base_addr = 0x0f0bc000 , length = 0x0114000 , type = 0x2

52 base_addr = 0x0f1d0000 , length = 0x09ab000 , type = 0x1

53 base_addr = 0x0fb7b000 , length = 0x0280000 , type = 0x2

54 base_addr = 0x0fdfb000 , length = 0x012000 , type = 0x3

55 base_addr = 0x0fe0d000 , length = 0x080000 , type = 0x4

56 base_addr = 0x0fe8d000 , length = 0x03d000 , type = 0x1

57 base_addr = 0x0feca000 , length = 0x02000 , type = 0x4

58 base_addr = 0x0fecc000 , length = 0x028000 , type = 0x1

59 base_addr = 0x0fef4000 , length = 0x084000 , type = 0x2

60 base_addr = 0x0ff78000 , length = 0x088000 , type = 0x4

61 base_addr = 0x00 , length = 0x00 , type = 0x2

62 [...]

63 Tag 0x8, Size 0x26

64 Tag 0x9, Size 0x1f4

Niklas Sombert

65 Tag 0xb, Size 0xc

66 Tag 0xd, Size 0x1b5

67 Tag 0xd, Size 0x1ae

68 Tag 0xe, Size 0x1c

69 Tag 0xf, Size 0x2c

70 Tag 0x11 , Size 0x1168

71 Tag 0x13 , Size 0xc

72 Total mbi size 0x2220

73 Halted.

Listing 1: booting the Multiboot 2 example kernel

This manual test was performed both in QEMU 8.2.2 and

on real hardware (a Dell Optiplex 9020 with an Intel Core

i7-4770 and 8GiB RAM).

Various existing operating systems have kernels that are

Multiboot-compatible. We tried booting some of them:

Table 2: tested operating systems

OS version status

NetBSD[20] 10.1

(i386)

works, with 64-bit OVMF

and the ForceOverwrite

quirk

HelenOS[12]

0.14.1

(ia32, amd64)

works

Lemon OS[15]

nightly-

2024-07-12

works

GNU HURD[9]

2025

(i386)

does not work due to

ACPI table placement on

QEMU+OVMF

FlingOS[22] 2015-09-14 works, with 64-bit OVMF

and the ForceOverwrite

quirk

FiwixOS[5] 3.5 works, with the LowerAl-

locations quirk

9front[1]

2025-10-11

RELEASE

(amd64)

works, with the LowerAl-

locations quirk

OpenIndiana[23] 2025.10 does not work

7 Conclusion
7.1 Summary
The abstractions provided by UEFI allow for writing straight-

forward and high-level bootloaders in comparison to the

legacy BIOS API. uefi-rs maps them nicely to Rust data struc-

tures and methods. The Rust support for this environment is

rather good, but there are still parts of the standard library

missing. The machine state specified by Multiboot requires

a bit of x86-specifics and assembly code.

towboot shows that is possible to boot operating systems

on present-day hardware by using Rust, gaining type- and

memory-safety
3
, higher-level programming paradigms such

as map, match and filter, better and earlier error messages

and dependency management in comparison to using C. In

comparison to other bootloaders, towboot has fewer features
(no drivers for file systems, no scripting language, no support

for displaying images and a pretty primitive menu), but fewer

features also lead to a smaller attack surface[39]. The code

is available at https://github.com/hhuOS/towboot.

7.2 Further Improvements
Some features are missing and could be added in the future:

7.2.1 Secure Boot. Most modern systems come with Secure

Boot enabled which should ensure that only signed code is

running in Ring 0. For this to work, the firmware checks the

signature before loading applications which provides some

protection against malware.[40]

Just signing the main bootloader executable with a key

that is trusted by the firmware would be enough to be able

to boot, but this would entirely circumvent this security

measure: Any Multiboot-compatible kernel could be booted,

no matter whether correctly signed or not.

Properly implementing this would mean to add signatures

for at least the kernel
4
in a backwards-compatible way and

requiring the kernels to verify code loaded into kernel space.

7.2.2 64-bit, UEFI-unaware kernels. towboot only supports

i686 kernels as specified by Multiboot 1 and 2 and UEFI-

aware i686 and x86_64 kernels as specified by Multiboot 2,

the latter only on systems with 64-bit firmware. Some boot-

loaders (e.g. Syslinux) support elf64 Multiboot 1 kernels[2].

Adding support for this requires detecting CPU support and

switching to Long Mode on 32-bit firmware.

7.2.3 other CPU architectures. UEFI also supports Itanium,

ARM and RISC-V (see [37] section 3.5.1.1). Multiboot 2 sup-

ports just x86 and MIPS (see [7] section 3.2), so there is no

other official overlap. There have been unofficial propos-

als[14] for Multiboot on ARM, though.

7.2.4 compatibility with more OS kernels. As seen in section

6.2, there are existing Multiboot kernels that towboot fails to
boot. This can probably be fixed.

References
[1] [SW], 9front. url: https://9front.org/Retrieved July 7, 2025 from.

[2] [SW], Doc/mboot. Syslinux Wiki. url: https://wiki.syslinux.org/wi

ki/index.php?title=Doc/mbootRetrieved Jan. 1, 2021 from.

[3] [SW], Easyboot. url: https://gitlab.com/bztsrc/easyboot/Retrieved

Oct. 31, 2025 from.

3
Interfacing with some of the UEFI APIs, memory management and jumping

to the kernel require a few pieces of unsafe code.

4
The modules could be signed, too, but just signing the kernel would bring

about the level of security modern Linux distributions provide.

https://github.com/hhuOS/towboot
https://9front.org/
https://wiki.syslinux.org/wiki/index.php?title=Doc/mboot
https://wiki.syslinux.org/wiki/index.php?title=Doc/mboot
https://gitlab.com/bztsrc/easyboot/

towboot – a Multiboot-compatible bootloader for UEFI-based x86 systems

[4] [SW] edera-dev, sprout. url: https://github.com/edera-dev/sprout

Retrieved Dec. 1, 2025 from.

[5] [SW], Fiwix. url: https://www.fiwix.org/Retrieved July 7, 2025

from.

[6] Bryan Ford and Erich Stefan Boleyn. [n. d.] Multiboot Specification
version 0.6.96. Free Software Foundation, Inc. Retrieved Oct. 13, 2020

from https://www.gnu.org/software/grub/manual/multiboot/multib

oot.html.

[7] Bryan Ford and Erich Stefan Boleyn. [n. d.] Multiboot2 Specification
version 2.0. GNU. Free Software Foundation, Inc. Retrieved Oct. 13,

2020 from https://www.gnu.org/software/grub/manual/multiboot2

/multiboot.html.

[8] [SW], GNU GRUB. GNU. url: https://www.gnu.org/software/grub

/Retrieved Oct. 13, 2020 from.

[9] [SW], GNU Hurd. GNU. url: https://www.gnu.org/software/hurd

/Retrieved Jan. 1, 2021 from.

[10] [SW], gnu-efi. url: https : / / sourceforge . net / projects / gnu - efi

/Retrieved Jan. 1, 2021 from.

[11] [SW], gnumach. GNU. url: https://www.gnu.org/software/hurd/m

icrokernel/mach/gnumach.htmlRetrieved Dec. 5, 2020 from.

[12] [SW], HelenOS. url: http://www.helenos.org/Retrieved June 30,

2023 from.

[13] [SW] hermit, loader. url: https://github.com/hermit- os/loader

Retrieved Dec. 1, 2025 from.

[14] jncronin. [n. d.] Multiboot ARM extensions v0.1. Retrieved Oct. 9,

2025 from https : / / github . com/ jncronin / rpi - boot /blob /master

/MULTIBOOT-ARM.

[15] [SW], Lemon OS. url: https://lemonos.org/Retrieved June 30, 2023

from.

[16] [SW], Limine. url: https://limine-bootloader.org/Retrieved June 8,

2023 from.

[17] [SW] Gabriel Majeri, uefi. crates.io. url: https://crates.io/crates/uef

iRetrieved Dec. 4, 2020 from.

[18] Lukas Markeffsky. 2023. Ein minimaler bootloader in rust. (2023).

https://markeffl.pages.cms.hu-berlin.de/yaros/doc/thesis.pdf.

[19] [SW], mkroening/count-unsafe. url: https://github.com/mkroening

/count-unsafeRetrieved Jan. 19, 2026 from.

[20] [SW], NetBSD. url: https://netbsd.org/Retrieved June 30, 2023 from.

[21] [n. d.] NetBSD Manual Pages. Chap. boot(8). Retrieved Jan. 4, 2021

from https://man.netbsd.org/NetBSD-9.1-STABLE/x86/boot.8.

[22] [SW] Edward Nutting, FlingOS. url: http://www.flingos.co.uk

/Retrieved Jan. 1, 2021 from.

[23] [SW], OpenIndiana. url: https://www.openindiana.org/Retrieved

June 30, 2023 from.

[24] [SW] Philipp Oppermann, bootloader. crates.io. url: https://crates.i

o/crates/bootloaderRetrieved Nov. 5, 2025 from.

[25] [SW] Philipp Oppermann, multiboot2. crates.io. url: https://crates

.io/crates/multiboot2Retrieved June 23, 2023 from.

[26] [SW], redox-os/bootloader. url: https://gitlab.redox-os.org/redox-o

s/bootloaderRetrieved Dec. 1, 2025 from.

[27] [SW], Rust Programming Language. url: https://www.rust-lang.or

g/Retrieved Jan. 1, 2021 from.

[28] [SW], Simpleboot. url: https : / / gitlab . com / bztsrc / simpleboot

Retrieved Oct. 31, 2025 from.

[29] [SW] Roderick W. Smith, The rEFInd Boot Manager. url: https://w

ww.rodsbooks.com/refind/Retrieved Oct. 14, 2020 from.

[30] [SW] Niklas Sombert, Add a builder to multiboot2 (Pull Request 133).

rust-osdev/multiboot2. url: https://github.com/rust-osdev/multibo

ot2/pull/133Retrieved June 23, 2023 from.

[31] [SW] Niklas Sombert, Add some functionality for using this in boot-

loaders (Pull Request 8). gz/rust-multiboot. url: https://github.com

/gz/rust-multiboot/pull/8Retrieved Jan. 4, 2021 from.

[32] [SW], systemd-boot UEFI Boot Manager. url: https://www.freedes

ktop.org/wiki/Software/systemd/systemd-boot/Retrieved Oct. 14,

2020 from.

[33] [n. d.] The Linux Kernel Documentation. Chap. x86-specific Docu-
mentation: The Linux/x86 Boot Protocol. Retrieved Jan. 4, 2021 from

https://www.kernel.org/doc/html/v5.10/x86/boot.html.

[34] [n. d.] The rustc book. Chap. Platform Support. Retrieved June 23, 2023

from https://doc.rust-lang.org/nightly/rustc/platform-support.html.

[35] [SW], The Syslinux Project. url: https : / / www . syslinux . org

/Retrieved Jan. 2, 2021 from.

[36] [SW], tianocore/edk2. url: https : / /github.com/tianocore/edk2

Retrieved Jan. 1, 2021 from.

[37] 2020. Unified Extensible Firmware Interface (UEFI) Specification, Ver-
sion 2.8 Errata B, May 2020. UEFI Forum. Retrieved Oct. 13, 2020 from

https://uefi.org/sites/default/files/resources/UEFI%20Spec%202.8

B%20May%202020.pdf.

[38] Tunç Uzlu and Ediz Şaykol. 2016. Utilizing rust programming lan-

guage for efi-based bootloader design. In RTA-CSIT, 100–106. Re-
trieved Oct. 22, 2025 from https://ceur-ws.org/Vol-1746/.

[39] JianqiangWang, MengWang, QinyingWang, Nils Langius, Li Shi, Ali

Abbasi, and Thorsten Holz. 2025. A comprehensive memory safety

analysis of bootloaders. In Network and Distributed System Security

Symposium, (Feb. 2025). Retrieved Oct. 22, 2025 from https://www.n

dss-symposium.org/wp-content/uploads/2025-330-paper.pdf.

[40] Richard Wilkins and Brian Richardson. 2013. Uefi secure boot in

modern computer security solutions. (2013). Retrieved Oct. 25, 2020

from https://uefi.org/sites/default/files/resources/UEFI_Secure_Boo

t_in_Modern_Computer_Security_Solutions_2019.pdf.

[41] [SW], XAMPPRocky/tokei. url: https://github.com/XAMPPRocky

/tokeiRetrieved Jan. 19, 2026 from.

[42] [SW] Gerd Zellweger, multiboot. crates.io. url: https://crates.io/cra

tes/multibootRetrieved Jan. 4, 2021 from.

https://github.com/edera-dev/sprout
https://github.com/edera-dev/sprout
https://www.fiwix.org/
https://www.gnu.org/software/grub/manual/multiboot/multiboot.html
https://www.gnu.org/software/grub/manual/multiboot/multiboot.html
https://www.gnu.org/software/grub/manual/multiboot2/multiboot.html
https://www.gnu.org/software/grub/manual/multiboot2/multiboot.html
https://www.gnu.org/software/grub/
https://www.gnu.org/software/grub/
https://www.gnu.org/software/hurd/
https://www.gnu.org/software/hurd/
https://sourceforge.net/projects/gnu-efi/
https://sourceforge.net/projects/gnu-efi/
https://www.gnu.org/software/hurd/microkernel/mach/gnumach.html
https://www.gnu.org/software/hurd/microkernel/mach/gnumach.html
http://www.helenos.org/
https://github.com/hermit-os/loader
https://github.com/hermit-os/loader
https://github.com/jncronin/rpi-boot/blob/master/MULTIBOOT-ARM
https://github.com/jncronin/rpi-boot/blob/master/MULTIBOOT-ARM
https://lemonos.org/
https://limine-bootloader.org/
https://crates.io/crates/uefi
https://crates.io/crates/uefi
https://markeffl.pages.cms.hu-berlin.de/yaros/doc/thesis.pdf
https://github.com/mkroening/count-unsafe
https://github.com/mkroening/count-unsafe
https://netbsd.org/
https://man.netbsd.org/NetBSD-9.1-STABLE/x86/boot.8
http://www.flingos.co.uk/
http://www.flingos.co.uk/
https://www.openindiana.org/
https://crates.io/crates/bootloader
https://crates.io/crates/bootloader
https://crates.io/crates/multiboot2
https://crates.io/crates/multiboot2
https://gitlab.redox-os.org/redox-os/bootloader
https://gitlab.redox-os.org/redox-os/bootloader
https://www.rust-lang.org/
https://www.rust-lang.org/
https://gitlab.com/bztsrc/simpleboot
https://gitlab.com/bztsrc/simpleboot
https://www.rodsbooks.com/refind/
https://www.rodsbooks.com/refind/
https://github.com/rust-osdev/multiboot2/pull/133
https://github.com/rust-osdev/multiboot2/pull/133
https://github.com/gz/rust-multiboot/pull/8
https://github.com/gz/rust-multiboot/pull/8
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.freedesktop.org/wiki/Software/systemd/systemd-boot/
https://www.kernel.org/doc/html/v5.10/x86/boot.html
https://doc.rust-lang.org/nightly/rustc/platform-support.html
https://www.syslinux.org/
https://www.syslinux.org/
https://github.com/tianocore/edk2
https://github.com/tianocore/edk2
https://uefi.org/sites/default/files/resources/UEFI%20Spec%202.8B%20May%202020.pdf
https://uefi.org/sites/default/files/resources/UEFI%20Spec%202.8B%20May%202020.pdf
https://ceur-ws.org/Vol-1746/
https://www.ndss-symposium.org/wp-content/uploads/2025-330-paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2025-330-paper.pdf
https://uefi.org/sites/default/files/resources/UEFI_Secure_Boot_in_Modern_Computer_Security_Solutions_2019.pdf
https://uefi.org/sites/default/files/resources/UEFI_Secure_Boot_in_Modern_Computer_Security_Solutions_2019.pdf
https://github.com/XAMPPRocky/tokei
https://github.com/XAMPPRocky/tokei
https://crates.io/crates/multiboot
https://crates.io/crates/multiboot

	Abstract
	1 Introduction
	2 Background
	2.1 UEFI
	2.2 Multiboot

	3 Related work
	4 Boot process
	4.1 Initialize the bootloader
	4.2 Determine what to boot
	4.3 Boot the operating system

	5 Rust and memory management
	5.1 UEFI and Rust
	5.2 Bootloaders and memory management

	6 Evaluation
	6.1 Automated testing
	6.2 Manual testing

	7 Conclusion
	7.1 Summary
	7.2 Further Improvements

